ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-08-81-87

УДК: 535.3, 535.015, 53.043

Prospective nanostructured coatings for modification of calcium fluoride surfaces

For Russian citation (Opticheskii Zhurnal):

Каманина Н.В., Кужаков П.В., Квашнин Д.Г. Перспективные наноструктурированные покрытия для модификации поверхности фторида кальция // Оптический журнал. 2021. Т. 88. № 8. С. 81–87. http://doi.org/10.17586/1023-5086-2021-88-08-81-87

 

Kamanina N.V., Kuzhakov P.V., Kvashnin D.G. Prospective nanostructured coatings for modification of calcium fluoride surfaces [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 8. P. 81–87. http://doi.org/10.17586/1023-5086-2021-88-08-81-87

For citation (Journal of Optical Technology):

N. V. Kamanina, P. V. Kuzhakov, and D. G. Kvashnin, "Prospective nanostructured coatings for modification of calcium fluoride surfaces," Journal of Optical Technology. 88(8), 464-468 (2021). https://doi.org/10.1364/JOT.88.000464

Abstract:

The basic properties of materials can be changed by structuring their volume with various nanoparticles as well as by surface modification. In this study, calcium fluoride (CaF2) is selected as a model matrix for investigating the characteristic surface properties, and its spectral and mechanical properties, as well as the surface wetting of a CaF2 surface modified with carbon nanotubes, are compared with the properties of pure crystals. Laser-oriented deposition and an additional electric field varied in the range of 100–600 V/cm are applied for surface structuring. The experimental results are confirmed by quantum-chemical modeling.

Keywords:

inorganic crystals, calcium fluoride, surface, carbon nanotubes, structuring, laser-oriented deposition, spectra, water molecules contact angle

Acknowledgements:

The authors are grateful to their colleagues from laboratories and universities for fruitful discussions. The last results were demonstrated and discussed in March 2020 at Petersburg Nuclear Physics Institute of the National Research Center “Kurchatov Institute” (Gatchina, Russia).

The presented results partially correlate with the study supported by the Russian project “Nanocoating-GOI” (2012–2015) and the International Russian–Israeli project “Adaptation” (2017). D.G.K. is grateful to the Ministry of Science and Higher Education of the Russian Federation (project no. 01201253304).

OCIS codes: 160.4760, 300.6170

References:

1. R. Arrigo and G. Malucelli, “Rheological behavior of polymer/carbon nanotube composites: an overview,” Materials 13, 2771 (2020).
2. S. Shafique, K. S. Karimov, M. Abid, M. M. Ahmed, K. M. Akhmedov, and Aziz-ur-Rehman, “Carbon nanotubes, orange dye, and graphene powder based multifunctional temperature, pressure, and displacement sensors,” J. Mater. Sci.: Mater. Electron. 31, 8893–8899 (2020).
3. M. Hazarika, P. Chinnamuthu, C. Borgohain, and J. P. Borah, “Role of MWCNT concentration in MWCNT/ZnFe2O4 nanocomposites for enhanced photocatalytic performance,” J. Mater. Sci.: Mater. Electron. 31, 10783–10794 (2020).
4. N. N. Konobeeva, E. G. Fedorov, N. N. Rosanov, A. V. Zhukov, R. Bouffanais, and M. B. Belonenko, “Stabilization of ultrashort pulses by external pumping in an array of carbon nanotubes subject to piezoelectric effects,” J. Appl. Phys. 126, 203103 (2019).
5. W. Fa, X. Yang, J. Chen, and J. Dong, “Optical properties of the semiconductor carbon nanotube intramolecular junctions,” Phys. Lett. 323, 122–131 (2004).
6. Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
7. A. A. Taherpour, A. Aghagolnezhad-Gerdroudbari, and S. Rafiei, “Theoretical and quantitative structural relationship studies of reorganization energies of [SWCNT (5,5)-armchair-CnH20] (n =20–310) nanostructures by neural network CFFBP method,” Int. J. Electrochem. Sci. 7, 2468–2486 (2012).
8. J. Robertson, “Realistic applications of CNTs,” Mater. Today 7(10), 46–52 (2004).
9. S. Namilae, N. Chandra, and C. Shet, “Mechanical behavior of functionalized nanotubes,” Chem. Phys. Lett. 387, 247–252 (2004).
10. C. Mühlig, S. Bublitz, R. Feldkamp, and H. Bernitzki, “Effect of ion beam figuring and subsequent antireflective coating deposition on the surface absorption of CaF2 at 193 nm,” Appl. Opt. 56(4), C91–C95 (2017).
11. A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Recording volume holograms on color centers in a CaF2 crystal,” Opt. Spectrosc. 111(6), 999–1007 (2011) [Opt. Spektrosk. 111(6), 1046–1055 (2011)].
12. R. Rauch, “Photoluminescence of color centers in crystals of alkaline earth fluorides,” Bull. Acad. Sci. USSR Phys. Ser. 37(3), 595–598 (1973).
13. N. V. Kamanina, S. V. Likhomanova, and P. V. Kuzhakov, “Advantages of the surface structuration of KBr materials for spectrometry and sensors,” Sensors 18, 3013 (2018).
14. N. V. Kamanina, P. Y. Vasilyev, and V. I. Studeonov, “Optical coating based on carbon nanotubes oriented in an electric field for optical instrumentation, micro- and nano-electronics when leveling the interface of media: solid substrate-coating,” Russian patent 2405177 (RU 2 405 177 C2) (2010).

15. N. V. Kamanina, P. V. Kuzhakov, and P. Y. Vasilyev, “A protective coating for hygroscopic optical materials based on laser-deposited carbon nanotubes for the purpose of optoelectronics and medical equipment,” Russia patent 2013118962 (RU (11) 2013 118 962(13) A) (2013).
16. N. V. Kamanina, S. V. Likhomanova, Yu. A. Zubtsova, P. V. Kuzhakov, M. A. Zimnukhov, P. Ya. Vasil’ev, and V. I. Studenov, “Surface modification of materials using laser-oriented nanostructuring,” J. Opt. Technol. 85(11), 722–728 (2018).
17. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
18. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).
19. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).