DOI: 10.17586/1023-5086-2021-88-08-88-98
УДК: 548.75, 535.3, 546.121, 681.7.068
Microstructured single-mode IR fibers based on metal halides with increased mode-field diameter
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Корсаков А.С., Южакова А.А., Салимгареев Д.Д., Корсакова Е.А., Львов А.Е., Корсаков М.С., Жукова Л.В. Микроструктурированные одномодовые инфракрасные световоды на основе галогенидов металлов с увеличенным диаметром поля моды // Оптический журнал. 2021. Т. 88. № 8. С. 88–98. http://doi.org/10.17586/1023-5086-2021-88-08-88-98
Korsakov A.S., Yuzhakova A.A., Salimgareev D.D., Korsakova E.A., Lvov A.E., Korsakov M.S., Zhukova L.V. Microstructured single-mode IR fibers based on metal halides with increased mode-field diameter [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 8. P. 88–98. http://doi.org/10.17586/1023-5086-2021-88-08-88-98
A. S. Korsakov, A. A. Yuzhakova, D. D. Salimgareev, E. A. Korsakova, A. E. Lvov, M. S. Korsakov, and L. V. Zhukova, "Microstructured single-mode IR fibers based on metal halides with increased mode-field diameter," Journal of Optical Technology. 88(8), 469-476 (2021). https://doi.org/10.1364/JOT.88.000469
This paper presents the results of a study of the refractive-index dispersion for the AgBr–TlI, AgBr–TiBr0.46I0.54, and AgCl–AgBr crystal systems in the spectral range from 0.4 to 56 µm, along with the results of the development and fabrication of single-mode microstructured IR fibers by extrusion from solid solutions of metal halides. The fibers had a central insert 16 µm in diameter of composition 2.6 mol% TlI in AgBr, located in a matrix of composition 2.3 mol% TlI in AgBr with external diameter 525 µm. Inserts with diameter 16 µm of composition 2.0 mol% TlI in AgB were placed in the matrix in hexagonal order. The distribution of the radiation emitted from the fibers in the far field at wavelength 10.6 µm was studied, along with the influence of local heating of a section of the fiber on the transport of the IR radiation. The mode-field diameter was experimentally estimated as 120±30µm. The fibers were suitable for transporting both laser and thermal radiation from heated objects to a thermal viewer.
microstructured fiber, infrared range, refractive index dispersion, metal halides, single mode operation, mode-field diameter
Acknowledgements:The research was supported by the grant of the Russian Science Foundation (18-73-10063).
OCIS codes: 060.0060, 060.4005
References:1. D. Martyshkin, K. Karki, V. Fedorov, and S. Mirov, “Room-temperature, nanosecond, 60-mJ/pulse Fe:ZnSe master-oscillator power-amplifier system operating at 3.8–5.0 μm,” Opt. Express 29, 2387–2393 (2021).
2. A. Sytchkova, B. Baloukas, O. Zabeida, A. Piegari, J. E. Klemberg-Sapieha, M. L. Grilli, and L. Martinu, “Mechanical and thermal properties of Si/SiO2 narrow-band mid-infrared filters for space applications,” in Optical Interference Coatings Conference (OIC) (2019), paper WB.3.
3. S. Basov, Y. Dankner, M. Weinstein, A. Katzir, and M. Platkov, “Technical Note: Noninvasive mid-IR fiber-optic evanescent wave spectroscopy (FEWS) for early detection of skin cancers,” Med. Phys. 47, 5523–5530 (2020).
4. C. Dettenrieder, Y. Raichlin, A. Katzir, and B. Mizaikoff, “Toward the required detection limits for volatile organic constituents in marine environments with infrared evanescent field chemical sensors,” Sensors 19, 3644 (2019).
5. T. Hocotz, O. Bibikova, V. Belikova, A. Bogomolov, I. Usenov, L. Pieszczek, T. Sakharova, O. Minet, E. Feliksberger, V. Artyushenko, B. Rau, and U. Zabarylo, “Synergy effect of combined near- and mid-infrared fibre spectroscopy for diagnostics of abdominal cancer,” Sensors 20, 6706 (2020).
6. A. G. Okhrimchuk, A. D. Pryamikov, K. N. Boldyrev, L. N. Butvina, and E. Sorokin, “Collective phenomena in Dy-doped silver halides in the near- and mid-IR,” Opt. Mater. Express 10, 2834–2848 (2020).
7. A. Turabi, A. S. Korsakov, L. V. Zhukova, and B. P. Zhilkin, “Investigation of the effect of mechanical vibration on optical properties when transmitting infrared radiation through silver halide fibers,” Opt. Mater. 109, 110215 (2020).
8. D. D. Salimgareev, A. A. Lashova, A. S. Shmygalev, E. A. Korsakova, B. P. Zhilkin, A. S. Korsakov, and L. V. Zhukova, “Influence of geometrical parameters on transmitting thermal radiation through silver halide fibers,” Results Phys. 16, 102994 (2020).
9. I. L. Jernelv, D. R. Hjelme, and A. Aksnes, “Infrared measurements of glucose in peritoneal fluid with a tunable quantum cascade laser,” Biomed. Opt. Express 11, 3818–3829 (2020).
10. D. Kumar, Sh. Saurabh, M. Tripathi, and A. Sharma, “Modal analysis of high-index core tellurite glass microstructured optical fibers in infrared regime,” J. Non-Cryst. Solids 511, 147–160 (2019).
11. H. Ren, S. Qi, Y. Hu, F. Han, J. Shi, X. Feng, and Zh. Yang, “All-solid mid-infrared chalcogenide photonic crystal fiber with ultralarge mode area,” Opt. Lett. 44, 5553–5556 (2019).
12. L. V. Zhukova, A. E. Lvov, A. S. Korsakov, D. D. Salimgareev, and V. S. Korsakov, “Domestic developments of IR optical materials based on solid solutions of silver halogenides and monovalent thallium,” Opt. Spectrosc. 125, 933–943 (2018).
13. D. N. Patel, T. Cai, T.-H. Su, C.-C. Tsai, N.-K. Chen, H.-C. Chui, and J.-T. Shy, “Mid-infrared saturated absorption spectroscopy inside a hollow glass waveguide,” Opt. Commun. 467, 125695 (2020).
14. A. Millo, L. Lobachinsky, and A. Katzir, “Single-mode index-guiding photonic crystal fibers for the middle infrared,” IEEE Photon. Technol. Lett. 20, 869–871 (2008).
15. L. N. Butvina, O. V. Sereda, A. L. Butvina, E. M. Dianov, N. V. Lichkova, and V. N. Zagorodnev, “Large-mode area single-mode microstructured optical fibre for the mid-IR region,” Quantum Electron. 39, 283–286 (2009).
16. A. Lvov, D. Salimgareev, M. Korsakov, A. Korsakov, and L. Zhukova, “Structure modeling and manufacturing PCFs for the range of 2–25 μm,” Opt. Mater. 73, 337–342 (2017).
17. L. Zhukova, A. Korsakov, A. Chazov, D. Vrublevsky, and V. Zhukov, “Photonic crystalline IR fibers for the spectral range of 2–40 μm,” Appl. Opt. 51, 2414–2418 (2012).
18. L. V. Zhukova, A. S. Korsakov, E. A. Korsakova, and A. A. Lashova, “Simulation of photonic crystal fibers at a wavelength of 5.75 μm,” in International Conference Laser Optics (ICLO) (2018), p. 375.
19. E. Korsakova, A. Lvov, D. Salimgareev, A. Korsakov, S. Markham, A. Mani, C. Silien, T. A. M. Syed, and L. Zhukova, “Stability of MIR transmittance of silver and thallium halide optical fibres in ionizing β- and γ -radiation from nuclear reactor,” Infrared Phys. Technol. 93, 171–177 (2018).
20. J. W. Fleming, “Dispersion in GeO2 –SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984).
21. A. S. Korsakov, D. S. Vrublevsky, A. E. Lvov, and L. V. Zhukova, “Refractive-index dispersion of AgCl1−x Brx (0 ≤ x ≤ 1) and Ag1−x Tlx Br1−x Ix (0≤ x ≤ 0.05),” Opt. Mater. 64, 40–46 (2016).
22. A. Korsakov, D. Salimgareev, A. Lvov, and L. Zhukova, “IR spectroscopic determination of the refractive index of Ag1−x Tlx Br1−0.54x I0.54x (0 ≤ x ≤ 0.05) crystals,” Opt. Laser Technol. 93, 18–23 (2017).
23. A. A. Yuzhakova, D. D. Salimgareev, and L. V. Zhukova, “IRGexagonPBG,” Registration certificate of program for computer No. 2020667449 (2020).
24. P. Zimmermann, Don’t Panic III: Layertec’s Guide to Optical Coatings and Optics (Layertec GmbH, Germany, 2018).
25. S. Israeli and A. Katzir, “Attenuation, absorption, and scattering in silver halide crystals and fibers in the mid infrared,” J. Appl. Phys. 115, 023104 (2014).
26. A. S. Shmygalev, B. P. Zhilkin, A. S. Korsakov, M. I. Nizovtsev, A. N. Sterlyagov, and V. I. Terekhov, “Transmission of IR light by light guides made of silver halide solid solutions,” Tech. Phys. Lett. 42, 883–885 (2016).
27. E. A. Korsakova, A. E. Lvov, I. A. Kashuba, V. S. Korsakov, D. D. Salimgareev, A. S. Korsakov, and L. V. Zhukova, “Fiber-optic assemblies based on polycrystalline lightguides for the mid-IR,” J. Opt. Technol. 86, 439–445 (2019).
28. E. Korsakova, A. Korsakov, N. Muftahitdinova, and L. Zhukova, “Arrays of microstructured MIR fibers based on silver halides for medical applications,” Proc. SPIE 11029, 110290T (2019).