ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-08-99-106

УДК: 531.787.5, 539.3

Informative light pulses of indicating polymer fiber-optic piezoelectroluminescent coatings upon indentation of rigid globular particles

For Russian citation (Opticheskii Zhurnal):

Паньков А.А. Информативные световые импульсы индикаторного полимерного оптоволоконного PEL-покрытия при вдавливании жёстких шаровых частиц // Оптический журнал. 2021. Т. 88. № 8. С. 99–106. http://doi.org/10.17586/1023-5086-2021-88-08-99-106

 

Pankov A.A. Informative light pulses of indicating polymer fiber-optic piezoelectroluminescent coatings upon indentation of rigid globular particles [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 8. P. 99–106. http://doi.org/10.17586/1023-5086-2021-88-08-99-106

For citation (Journal of Optical Technology):

A. A. Pan’kov, "Informative light pulses of indicating polymer fiber-optic piezoelectroluminescent coatings upon indentation of rigid globular particles," Journal of Optical Technology. 88(8), 477-482 (2021). https://doi.org/10.1364/JOT.88.000477

Abstract:

A mathematical model of operation of an indicating polymer coating with an embedded fiber-optic piezoelectroluminescent (PEL) sensor is developed for diagnosing multiple mechanical force actions by digital processing of an informative luminous flux at the output of the optical fiber of the sensor. Distributed force action is caused by a multipoint low-velocity impact of multiple rigid particles, e.g., hail impacts, and the indentation of particles across the outer surface of the coating. The results of the numerical modeling of the sequence of informative light pulses at the output of the optical fiber of the PEL sensor are presented. The effects of the amplitude of the control voltage at the sensor contacts and the possible intersections of the “perturbation zones” of the adjacent globular particles on the amplitude and shape of light pulses are identified via numerical analysis. The filtering of informative signals of the indicating PEL coating based on the control sensor voltage is studied to exclude the effect of insignificant (outside of the operational range) external mechanical actions on the detected informative light signal.

Keywords:

indicating polymer coating, embedded fiber-optic sensor, piezoelectroluminescent effect, mechanoluminescent effect, particle impact, numerical modeling

Acknowledgements:

The results were obtained when performing a state assignment of the Ministry of Science and Higher Education of the Russian Federation for conducting fundamental scientific investigations (project no. FSNM-2020-0026).

OCIS codes: 060.2370, 120.5475

References:

1. X. Wang, F. Sun, G. Yin, Y. Wang, B. Liu, and M. Dong, “Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review,” Sensors 18(2), 330 (2018).
2. K. Lu, W. Huang, J. Guo, T. Gong, X. Wei, B.-W. Lu, S.-Y. Liu, and B. Yu, “Ultra-sensitive strain sensor based on flexible poly(vinylidene fluoride) piezoelectric film,” Nanoscale Res. Lett. 13, 83 (2018).
3. R. Koiva, M. Zenker, C. Schurmann, R. Haschke, and H. J. Ritter, “A highly sensitive 3D-shaped tactile sensor,” in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2013), pp. 1084–1089.
4. H. Yousef, M. Boukallel, and K. Althoefer, “Tactile sensing for dexterous in-hand manipulation in robotics-a review,” Sens. Actuators A 167, 171–187 (2011).
5. G. Liang, Y. Wang, D. Mei, K. Xi, and Z. Chen, “Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement,” J. Microelectromech. Syst. 24(5), 1510–1519 (2015).
6. Y. M. Fegenbaum, S. V. Dubinskii, D. G. Bozhevalov, Y. S. Sokolov, E. S. Metelkin, Y. A. Mikolaichuk, and V. S. Shapkin, Ensuring the Integrity of Aerial Structures Considering Random Operational Impact Actions (Tekhnosphera, Moscow, 2018).
7. K. S. E. Ramadan, D. Sameoto, and S. Evoy, “A review of piezoelectric polymers as functional materials for electromechanical transducers,” Smart Mater. Struct. 23(3), 033001 (2014).
8. L. Seminara, L. Pinna, M. Valle, L. Basiricò, A. Loi, P. Cosseddu, A. Bonfiglio, A. Ascia, M. Biso, A. Ansaldo, D. Ricci, and G. Metta, “Piezoelectric polymer transducer arrays for flexible tactile sensors,” IEEE Sens. J. 13(10), 4022–4029 (2013).
9. O. Hamdi, F. Mighri, and D. Rodrigue, “Piezoelectric cellular polymer films: fabrication, properties and applications (Review),” AIMS Mater. Sci. 5(5), 845–869 (2018).
10. U. E. Krauya and Y. L. Yansons, Mechanoluminescence of Composite Materials: Methods, Equipment and Results of Researches (Zinatne, Riga, 1990).
11. Y. Jia, X. Tian, Z. Wu, X. Tian, J. Zhou, Y. Fang, and C. Zhu, “Novel mechano-luminescent sensors based on piezoelectric/electroluminescent composites,” Sensors 11(4), 3962–3969 (2011).
12. M. J. Sundaresan, A. Ghoshal, and M. J. Schulz, “Sensor array system,” US patent 6399939 B1 (2002).

13. A. A. Vetrov and A. N. Sergushichev, “Hybrid vibration sensor with conversion of a piezoelectric signal into modulation of optical radiation and its transmission through optical fiber,” J. Opt. Technol. 86(12), 789–793 (2019) [Opt. Zh. 86(12), 53–58 (2019)].
14. D. S. Agafonova and A. I. Sidorov, “Effect of geometrical factors on the efficiency with which an electric spark is recorded using a fiber sensor with luminescent cladding,” J. Opt. Technol. 87(2), 127–131 (2020) [Opt. Zh. 87(2), 76–81 (2020)].
15. A. A. Pan’kov, “Sensory system,” Russian patent 2698958 (2019).
16. A. A. Pan’kov, “Fiber-optic pressure sensor,” Russian patent 2630537 (2017).
17. A. A. Pan’kov, “Piezoelectroluminescent fiber-optic sensors for temperature and deformation fields,” Sens. Actuators A 288, 171–176 (2019).
18. P. A. Belous, Axisymmetric Problems of Elasticity Theory (OGPU, Odessa, 2000).
19. A. A. Pan’kov and P. V. Pisarev, “Numerical modeling of electroelastic fields in the surface piezoelectric luminescent optical fiber sensor to diagnose deformation of composite plates,” PNRPU Mech. Bull. (2), 64–77 (2020).
20. Z. Jian, “Study of a novel distributed vibration sensing system based on weak fiber Bragg gratings,” J. Opt. Technol. 85(7), 437–443 (2018) [Opt. Zh. 85(7), 76–83 (2018)].
21. A. A. Pan’kov, “Curvilinear fiber-optic deformation sensor with a distributed Bragg grating embedded in the polymer composite,” J. Opt. Technol. 87(8), 452–458 (2020) [Opt. Zh. 87(8), 3–11 (2020)].