DOI: 10.17586/1023-5086-2021-88-09-03-08
УДК: 543.424.2
Use of Raman spectroscopy for the assessment of dentin materials during their fabrication
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Тимченко П.Е., Тимченко Е.В., Волова Л.Т., Фролов О.О. Применение метода спектроскопии комбинационного рассеяния для оценки дентинных материалов в процессе их изготовления // Оптический журнал. 2021. Т. 88. № 9. С. 3–8. http://doi.org/10.17586/1023-5086-2021-88-09-03-08
Timchenko P.E., Timchenko E.V., Volova L.T., Frolov O.O. Use of Raman spectroscopy for the assessment of dentin materials during their fabrication [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 9. P. 3–8. http://doi.org/10.17586/1023-5086-2021-88-09-03-08
P. E. Timchenko, E. V. Timchenko, L. T. Volova, and O. O. Frolov, "Use of Raman spectroscopy for the assessment of dentin materials during their fabrication," Journal of Optical Technology. 88(9), 485-488 (2021). https://doi.org/10.1364/JOT.88.000485
The results of an expanded spectral analysis of donor dentin materials using Raman spectroscopy are presented. Mathematical methods for the enhancement of the resolution of spectral profiles and chemometric analysis for assessing the composition of biomaterials are used. Criteria for the noninvasive assessment of dentin materials using their spectral properties during their fabrication are formulated.
Raman spectroscopy, dentin materials, spectral lines division, ROC-analysis
Acknowledgements:The authors are grateful to the dental clinic “Diamant” and M. A. Zybin for providing the donor dentin material.
OCIS codes: 300.6450, 160.1435, 170.6510
References:1. M. V. Lomakin, “New system of dental osteointegrating implants,” Habilitation thesis (Moscow State University of Medicine and Dentistry, Moscow, 2001).
2. I. A. Kirilova, M. A. Sadovoi, and V. T. Podorozhnaya, “Comparative characteristics of materials for bone grafting: composition and properties,” Khir. Pozvonochnika (3), 72–83 (2012).
3. C. E. Misch and F. Dietsh, “Bone-grafting materials in implant dentistry,” Implant Dent. 2(3), 158–167 (1993).
4. M. Murata, T. Akazaw, M. Mitsugi, I. W. Um, K. W. Kim, and Y. K. Ki, “Human dentin as novel biomaterial for bone regeneration,” in Biomaterials—Physics and Chemistry, R. Pignatello, ed. (InTech, London, 2011), pp. 127–137.
5. V. E. Privalov and V. G. Shemanin, “Optimization of a differential absorption and scattering lidar for sensing molecular hydrogen in the atmosphere,” Tech. Phys. 69(8), 928–931 (1999) [Zh. Tekh. Fiz. 69, 65–68 (1999)].
6. E. Voronina, V. Privalov, and V. Shemanin, “Lidar sounding of iodine molecules at low pressures,” Opt. Spectrosc. 93(4), 643–645 (2002) [Opt. Spektrosk. 93(4), 699–701 (2002)].
7. L. E. S. Soares, A. D. F. Campos, and A. A. Martin, “Human and bovine dentin composition and its hybridization mechanism assessed by FT-Raman,” J. Spectrosc. 2013, 210671 (2013).
8. E. Landi, A. Tampieri, G. Celotti, L. Vichi, and M. Sandri, “Influence of synthesis and sintering parameters on the characteristics of calcium phosphate,” Biomaterials 25, 1763–1770 (2004).
9. E. V. Timchenko, P. E. Timchenko, L. T. Volova, O. O. Frolov, M. A. Zibin, and I. V. Bazhutova, “Raman spectroscopy of changes in the tissues of teeth with periodontitis,” Diagnostics 10, 876 (2020).