ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-09-69-74

УДК: 681.787, 681.2.08

Compensation of the towing noise of a fiber-optic streamer using an additional interferometer

For Russian citation (Opticheskii Zhurnal):

Дмитращенко П.Ю., Плотников М.Ю., Лавров В.С., Волков А.В., Шарков И.А., Годовова А.С. Компенсация шумов буксировки волоконно-оптической сейсмической косы с использованием вспомогательного интерферометра // Оптический журнал. 2021. Т. 88. № 9. С. 69–74. http://doi.org/10.17586/1023-5086-2021-88-09-69-74

 

Dmitrashchenko P.Yu., Plotnikov M.Yu., Lavrov V.S., Volkov A.V., Sharkov I.A., Godovova A.S. Compensation of the towing noise of a fiber-optic streamer using an additional interferometer [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 9. P. 69–74. http://doi.org/10.17586/1023-5086-2021-88-09-69-74

For citation (Journal of Optical Technology):

P. Yu. Dmitrashchenko, M. Yu. Plotnikov, V. S. Lavrov, A. V. Volkov, I. A. Sharkov, and A. S. Godovova, "Compensation of the towing noise of a fiber-optic streamer using an additional interferometer," Journal of Optical Technology. 88(9), 532-535 (2021). https://doi.org/10.1364/JOT.88.000532

Abstract:

One of the significant factors affecting the operation of fiber-optic towed streamers is towing noise, which is caused by the varying speed of the towing vessel and the resistance of the buoys and the floating anchor of the streamer during towing. In this study, a method for compensating the towing noise of a fiber-optic streamer is proposed. The proposed method entails independent measurement of the towing noise using an additional interferometer and subtraction of its signal from the signals of the fiber-optic hydrophones of the streamer. The experimental results show that the towing noise can be reduced to 70% in the frequency range of 0–40 Hz.

Keywords:

fiber-optic towed streamers, interferometric measurements, towing noise, noise compensation

OCIS codes: 060.2370, 120.3180

References:

1. E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, Hoboken, 2011), pp. 24–49.
2. S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors (CRC Press, Boca Raton, 2008).
3. J. M. D. Freitas, “Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks,” Meas. Sci. Technol. 22(5), 052001 (2011).
4. M. Zhang, X. Ma, L. Wang, S. Lai, H. Zhou, H. Zhao, and Y. Liao, “Progress of optical fiber sensors and its application in harsh environment,” Photon. Sens. 1(1), 84–89 (2011).
5. B. N. P. Paulsson, J. L. Toko, J. A. Thornburg, F. Slopko, R. He, and C. Zhang, “A high-performance fiber optic seismic sensor system,” in Proceedings of the 38th Workshop on Geothermal Reservoir Engineering (2013), p. 8.
6. J. T. Kringlebotn, H. Nakstad, and M. Eriksrud, “Fibre optic ocean bottom seismic cable system: from innovation to commercial success,” Proc. SPIE 7503, 75037U (2009).
7. C. Berg, J. Langhammer, and P. Nash, “Lifetime stability and reliability of fibre-optic seismic sensors for permanent reservoir monitoring,” in Proceedings of the Society of Exploration Geophysicists Annual Meeting (2012).
8. H. Nakstad and J. T. Kringlebotn, “Realisation of a full-scale fibre optic ocean bottom seismic system,” Proc. SPIE 7004, 700436 (2008).
9. C. Kirkendall, T. Barock, A. Tveten, and A. Dandridge, “Fiber optic towed arrays,” Appl. Opt. 54, F268–F285 (2015).
10. F. Souto, “Fibre optic towed array: the high-tech compact solution for naval warfare,” in Proceedings of Acoustics (2013), pp. 17–20.
11. V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, and A. U. Kireenkov, “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Opt. Fiber Technol. 34, 47–51 (2017).
12. M. Y. Plotnikov, V. S. Lavrov, P. Yu. Dmitraschenko, A. V. Kulikov, and I. K. Meshkovskiy, “Thin cable fiber-optic hydrophone array for passive acoustic surveillance applications,” IEEE Sens. J. 19(9), 3376–3382 (2019).
13. R. Stolkin, A. Sutin, S. Radhakrishnan, M. Bruno, B. Fullerton, A. Ekimov, and M. Raftery, “Feature based passive acoustic detection of underwater threats,” Proc. SPIE 6204, 620408 (2006).

14. E. T. Bick and R. T. Barock, “CENTURION harbor surveillance test bed,” in Proceedings of OCEANS MTS, Vol. 2 (2005), pp. 1358–1363.
15. D. Meggitt, J. Wilson, and D. Warren, “Project Centurion: installation of lightweight acoustic arrays in shallow water,” in Proceedings of OCEANS MTS (2005), pp. 1339–1344.
16. B. Borowski, A. Sutin, H. S. Roh, and B. Bunin, “Passive acoustic threat detection in estuarine environments,” Proc. SPIE 6945, 694513 (2008).
17. A. A. Vlasov, M. Y. Plotnikov, V. S. Lavrov, S. S. Kiselev, and A. S. Aleinik, “The influence of a method of bracing a fiber-optical seismic streamer during towing on the parameters of its output signal,” Instrum. Exp. Tech. 63(4), 577–582 (2020).
18. A. A. Vlasov, A. S. Aleynik, M. Yu. Plotnikov, A. A. Dmitriev, and S. V. Varzhel, “Methods of mechanical noise impact suppression during streamer towing process using fiber Bragg gratings,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. 19(4), 574–585 (2019).
19. J. Appling, “Vibration isolation module,” US patent 4628851A (1986).
20. R. Reynier, J. G. Malcor, G. Moresco, and F. Ramoger, “Vibration damper for a towed body,” US patent 4762208 (1988).
21. S. A. McGavern, “Cable vibration damper,” US patent 2969416 (1961).
22. H. A. Miller and C. S. Nichols, “Acoustic envelope having minimal vibration and flow induced noises,” US patent 4402069 (1983).
23. V. T. Grinchenko, A. P. Makarenkov, and V. A. Voskoboinik, “Hydrodynamic noise of vertical drifting antenna and methods for its reduction,” Gidroakust. Zh. (3), 17–24 (2006).
24. A. A. Vlasov, M. Yu. Plotnikov, A. V. Volkov, V. S. Lavrov, I. A. Sharkov, and A. S. Aleinik, “Compensating the influence of background noise on the operation of a fiber-optic interferometer,” J. Opt. Technol. 87(9), 535–541 (2020) [Opt. Zh. 87(9), 44–53 (2020)].
25. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
26. A. A. Vlasov, M. Y. Plotnikov, S. A. Volkovsky, A. S. Aleinik, E. A. Motorin, I. A. Sharkov, and A. A. Makarenko, “Development of the passive vibroacoustic isolation system for the path matched differential interferometry-based fiber-optic sensors,” Opt. Fiber Technol. 57, 102241 (2020).
27. A. S. Kozlov, I. Ilichev, and A. Shamray, “An integrated optical scheme for interrogation of interferometric fiber optic sensors,” in Proceedings of OPTO (2009), pp. 157–159.
28. A. Rissons and J.-C. Mollier, “The vertical-cavity surface emitting laser (VCSEL) and electrical access contribution,” in Optoelectronics-Devices and Applications (InTech, Rijeka, 2011), pp. 227–234.
29. A. V. Volkov, M. Y. Plotnikov, M. V. Mekhrengin, G. P. Miroshnichenko, and A. S. Aleinik, “Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors,” IEEE Sens. J. 17(13), 4143–4150 (2017).
30. T. R. Christian, P. A. Frank, and B. H. Houston, “Real-time analog and digital demodulator for interferometric fiber optic sensors,” Proc. SPIE 2191, 324–336 (1994).
31. Y. Liu, L. Wang, C. Tian, M. Zhang, and Y. Liao, “Analysis and optimization of the PGC method in all digital demodulation systems,” J. Lightwave Technol. 26(18), 3225–3233 (2008).