ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-09-85-92

УДК: 535.345.673

Synthesis of narrow-band interference filters with absorbing metal films

For Russian citation (Opticheskii Zhurnal):

Котликов Е.Н., Тропин А.Н. Синтез узкополосных интерференционных фильтров с поглощающими металлическими пленками // Оптический журнал. 2021. Т. 88. № 9. С. 85–92. http://doi.org/10.17586/1023-5086-2021-88-09-85-92

 

E. N. Kotlikov and A. N. Tropin Synthesis of narrow-band interference filters with absorbing metal films [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 9. P. 85–92. http://doi.org/10.17586/1023-5086-2021-88-09-85-92

For citation (Journal of Optical Technology):

E. N. Kotlikov and A. N. Tropin, "Synthesis of narrow-band interference filters with absorbing metal films," Journal of Optical Technology. 88(9), 543-547 (2021). https://doi.org/10.1364/JOT.88.000543

Abstract:

Designs of narrow-band infrared metal–dielectric interference filters are proposed. The unique feature of the developed filters is the fact that the metal films are positioned within the interference coating structure to suppress the unwanted transmission of long-wavelength radiation with wavelengths exceeding 3.5 µm. The peculiarities of the design and spectral properties of such filters are demonstrated using a narrow-band filter with a transmission maximum at 3.43 µm, which is used in infrared nondispersive absorption gas sensors.

Keywords:

interference filters, thin films, infrared spectrum, absorption, transmission, nondispersive infrared sensor

Acknowledgements:

The research was supported by the Ministry of Science and Higher Education of the Russian Federation, grant No. FSFR-2020-0004.

OCIS codes: 350.2460, 310.1620

References:

1. M. Vollmer and K.-P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (Wiley, New York, 2018).
2. V. V. Tarasov and Yu. G. Yakushenkov, “Modern state and development perspectives of foreign infrared imagers,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. 3(85), 1–13 (2013).
3. A. Sklorz, S. Janssen, and W. Lang, “Detection limit improvement for NDIR ethylene gas detectors using passive approaches,” Sens. Actuators B 175, 246–254 (2012).
4. S. P. Varfolomeev, N. I. Gorbunov, L. K. Diikov, and F. K. Medvedev, “Sensors for fire- and explosion-safety systems,” Datchiki Syst. (6), 5–7 (2004).
5. D. S. Afanas’ev, E. A. Bardakova, and D. S. Bystryakov, “Analytical review sensors of volatiles for the internet of things,” Inf. Tekhnol. Telecommun. 4, 1–12 (2016).
6. E. N. Kotlikov and Yu. A. Novikova, “Optical constants of silicon in the range of 30–10000 cm−1 ,” Opt. Spectrosc. 120(5), 815–817 (2016) [Opt. Spektrosk. 120(5), 867–870 (2016)].
7. D. T. Doi and L. A. Gubanova, “Metal–dielectric interference light filters,” Nauchno-Tekh. Vestn. S.-Peterb. Gos. Univ. Inf. Tekhnol., Mekh. Opt. 11(5), 19–22 (2001).
8. H. A. Macleod, Thin Film Optical Filters (CRC, Tucson, 2010).
9. Y.-J. Jen and M.-J. Lin, “Design and fabrication of a narrow bandpass filter with low dependence on angle of incidence,” Coatings 8(7), 231 (2018).
10. E. N. Kotlikov, N. P. Lavrovskaya, and A. N. Tropin, “Metal–dielectric interference filters for direct flame sensors,” in Proceedings of the X International Conference on Photonics and Informational Optics (2021), pp. 365–366.
11. N. A. Borisevich, V. G. Vereshchagin, and M. A. Validov, Infrared Filters (Nauka i Tehnika, Minsk, 1971).
12. E. N. Kotlikov, I. I. Kovalenko, and Yu. A. Novikova, “Film Manager software for synthesis and analysis of interference coatings,” Inf.-Upr. Syst. 3(76), 51–59 (2015).
13. F. P. Vasil’ev, Numerical Methods for Extremum Problems (Nauka, Moscow, 1980).
14. V. M. Zolotarev, I. T. Morozov, and E. V. Smirnov, Optical Constants of Natural and Technical Agents (Khimiya, Leningrad, 1984).
15. A. V. Tikhonravov, “Needle optimization technique: the history and the future,” Proc. SPIE 3133, 2–7 (1997).
16. F. Abeles, “Sur la propagation des ondes electromagnetiques dans les milieux stratifies,” Ann. Phys. 12(3), 504–520 (1948).
17. O. Arnon and P. Baumeister, “Electric field distribution and the reduction of laser damage in multilayers,” Appl. Opt. 19(11), 1853–1855 (1980).
18. Yu. V. Troitskii, Multibeam Reflection-Type Interferometers (Nauka, Novosibirsk, 1985).
19. P. Rouard and A. Meessen, “II Optical properties of thin metal films,” Prog. Opt. 15, 77–137 (1977).
20. E. N. Kotlikov and Yu. A. Novikova, “Comparative analysis of the stability criteria of interference coatings,” J. Opt. Technol. 80(9), 571–576 (2013) [Opt. Zh. 80(9), 61–67 (2013)].