ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-09-09-19

УДК: 537.63, 535.37

Luminescence of a complex composed of a quantum dot and a layered plasmon nanoparticle in a magnetic field

For Russian citation (Opticheskii Zhurnal):

Кучеренко М.Г., Налбандян В.М., Чмерева Т.М. Люминесценция комплекса «квантовая точка — слоистая плазмонная наночастица» в магнитном поле // Оптический журнал. 2021. Т. 88. № 9. С. 9–19. http://doi.org/10.17586/1023-5086-2021-88-09-09-19

 

Kucherenko M.G., Nalbandyan V.M., Chmereva T.M. Luminescence of a complex composed of a quantum dot and a layered plasmon nanoparticle in a magnetic field [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 9. P. 9–19. http://doi.org/10.17586/1023-5086-2021-88-09-09-19

For citation (Journal of Optical Technology):

M. G. Kucherenko, V. M. Nalbandyan, and T. M. Chmereva, "Luminescence of a complex composed of a quantum dot and a layered plasmon nanoparticle in a magnetic field," Journal of Optical Technology. 88(9), 489-496 (2021). https://doi.org/10.1364/JOT.88.000489

Abstract:

This paper discusses the characteristics of the electric field inside and outside an electronically excited quantum dot. It shows that the electric potential behaves differently during strong and weak confinement of an electron–hole pair. Based on a specially created theoretical model, the luminescence spectra and the nonradiative energy-transfer rates from an exciton-activated quantum dot to a layered nanoparticle in an external magnetic field, as well as the magnetic induction, are calculated as a function of the geometric and polarization parameters of the system. Two different cases of the combination of the composite nanoparticle’s core and casing materials—metal/dielectric and dielectric/metal—are considered. It is shown that the magnetization of the electron plasma of the metallic part of the nanocomposite in an external magnetic field causes the luminescence spectra of the quantum-dot–layered-nanoparticle complex to vary, expressed as splitting of the plasmon-resonance bands.

Keywords:

quantum dot, layered nanoparticle, exciton-plasmon interaction, luminescence spectra, magnetic field

Acknowledgements:

The authors are grateful to E. A. Pryakhina for help in carrying out the computer calculations.

The research was supported by the Ministry of Science and Higher Education of the Russian Federation within the scientific project No. FSGU-2020-0003.

OCIS codes: 260.3800, 250.5403, 260.5740

References:

1. M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
2. E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
3. H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
4. A. P. Litvin, I. V. Martynenko, F. Purcell-Milton, A. V. Baranov, A. V. Fedorov, and Y. K. Gun’ko, “Colloidal quantum dots for optoelectronics,” J. Mater. Chem. A 5(26), 13252–13275 (2017).
5. S. Yan, X. Zhu, J. Dong, Y. Ding, and S. Xiao, “2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications,” Nanophotonics 9(7), 1877–1900 (2020).
6. J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon-exciton interaction in the intermediate coupling regime,” ACS Nano 12(10), 10393–10402 (2018).
7. T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1(5), 454–463 (2014).
8. O. Bitton, S. N. Gupta, and G. Haran, “Quantum dot plasmonics: from weak to strong coupling,” Nanophotonics 8(4), 559–575 (2019).
9. N. Fontaine, A. Picard-Lafond, J. Asselin, and D. Boudreau, “Thinking outside the shell: novel sensors designed from plasmon-enhanced fluorescent concentric nanoparticles,” Analyst 145(18), 5965–5980 (2020).
10. D. V. Guzatov, S. V. Gaponenko, and H. V. Demir, “Colloidal photoluminescent refractive-index nanosensor using plasmonic effects,” Z. Phys. Chem. 232(9–11), 1431–1441 (2018).
11. A. Yang and T. W. Odom, “Breakthroughs in photonics 2014: advances in plasmonic nanolasers,” IEEE J. Photonics 7(3), 0700606 (2015).
12. S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light: Sci. Appl. 9(1), 90 (2020).
13. A. N. Kamalieva, N. A. Toropov, and T. A. Vartanyan, “Spasers monolayer based on silver nanoparticles,” Proc. SPIE 10672, 1067224 (2018).
14. V. I. Balykin, “Plasmon nanolaser: current state and prospects,” Phys.–Usp. 61(9), 846–870 (2018) [Usp. Fiz. Nauk 188(9), 935–963 (2018)].
15. M. Chmereva, M. G. Kucherenko, D. A. Kislov, and V. M. Nalbandyan, “Plasmon–exciton interaction in planar nanostructures with quantum dots,” Opt. Spectrosc. 125(5), 735–742 (2018) [Opt. Spektrosk. 125(5), 670–677 (2018)].
16. V. Krivenkov, P. Samokhvalov, I. Nabiev, and Y. P. Rakovich, “Synergy of excitation enhancement and the Purcell effect for strong photoluminescence enhancement in a thin-film hybrid structure based on quantum dots and plasmon nanoparticles,” J. Phys. Chem. Lett. 11(19), 8018–8025 (2020).
17. T. M. Chmereva, M. G. Kucherenko, and K. S. Kurmangaleev, “The plasmon–exciton interaction in layered nanostructures with two-dimensional J-aggregates,” Opt. Spectrosc. 120(6), 881–887 (2016) [Opt. Spektrosk. 120(6), 941–947 (2016)].
18. P. Rajput and M. S. Shishodia, “Förster resonance energy transfer and molecular fluorescence near gain-assisted refractory nitrides based plasmonic core-shell nanoparticle,” Plasmonics 15(6), 2081–2093 (2020).
19. D. V. Guzatov and S. V. Gaponenko, “Photoluminescence of molecules close to metallic nanoparticles with dielectric casing,” Dokl. Nats. Akad. Nauk Belarusi 63(6), 689–694 (2020).
20. M. G. Kucherenko and V. M. Nalbandyan, “Luminescence of a two-particle complex from a spherical quantum dot and plasmon nanoglobule in an external magnetic field,” Opt. Spectrosc. 128(11), 1910–1917 (2020) [Opt. Spektrosk. 128(11), 1776–1783 (2020)].
21. M. G. Kucherenko and V. M. Nalbandyan, “Polarizability spectra of magnetized layered nanocomposites with an anisotropic core or cladding and localized surface plasmons,” J. Opt. Technol. 85(9), 524–530 (2018) [Opt. Zh. 85(9), 3–11 (2018)].
22. M. G. Kucherenko and V. M. Nalbandyan, “Polarizability spectra of nanoclusters composed of two composite particles in an external magnetic field,” Vestn. Orenb. Gos. Univ. 188(13), 156–161 (2015).
23. M. G. Kucherenko and V. M. Nalbandyan, “Dipole polarizability and the absorption cross section of two-particle nanoclusters composed of conductive homogeneous and layered particles with a degenerate electron gas,” Izv. Vyssh. Uchebn. Zaved. Fiz. 59(9), 87–93 (2016).
24. N. A. Toropov, I. A. Gladskikh, P. V. Gladskikh, A. N. Kosarev, V. V. Preobrazhenski˘ı, M. A. Putyato, and T. A. Vartanyan, “Absorption and photoluminescence of epitaxial quantum dots in the near field of silver nanostructures,” J. Opt. Technol. 84(7), 459–461 (2017) [Opt. Zh. 84(7), 37–40 (2017)].
25. L. B. Matyushkin, A. Pertsova, and V. A. Moshnikov, “Enhanced luminescence of quantum dots near a layer of Ag/SiO2 nanoparticles,” Tech. Phys. Lett. 44, 331–333 (2018) [Pis’ma Zh. Tekh. Fiz. 44(8), 35–41 (2018)].
26. A. O. Muravitskaya, L. L. Trotsiuk, O. S. Kulakovich, L. I. Gurinovich, S. V. Gaponenko, and A. V. Antanovich, “Refractive index influence on the quantum dots fluorescence near the gold nanorods,” Int. J. Nanosci. 18(03n04), 1940003 (2019).
27. M. Kucherenko and V. Nalbandyan, “Absorption and spontaneous emission of light by molecules near metal nanoparticles in external magnetic field,” Phys. Procedia 73, 136–142 (2015).
28. Z. W. Ma, J. P. Zhang, X. Wang, Y. Yu, J. B. Han, G. H. Du, and L. Li, “Magnetic field induced great photoluminescence enhancement in an Er3+ :YVO4 single crystal used for high magnetic field calibration,” Opt. Lett. 38(19), 3754–3757 (2013).
29. T. Shikama, K. Fujii, K. Mizushiri, M. Hasuo, S. Kado, and H. Zushi, “Calculation of a magnetic field effect on emission spectra of light diatomic molecules for diagnostic application to fusion edge plasmas,” Plasma Phys. Controlled Fusion 51(12), 122001 (2009).
30. C. M. Briskina, A. P. Tarasov, V. M. Markushev, and M. A. Shiryaev, “Magnetic field influence on the intensity of ZnO random lasing and exciton luminescence,” J. Nanophotonics 12(4), 043506 (2018).

31. C. M. Briskina, A. P. Tarasov, V. M. Markushev, and M. A. Shiryaev, “Enhanced edge radiation of ZnO nanorods in a magnetic field,” Zh. Prikl. Spektrosk. 85(6), 1018–1020 (2018).
32. W. J. Yu, H. Sun, and L. Gao, “Optical bistability in core-shell magnetoplasmonic nanoparticles with magnetocontrollability,” Opt. Express 24(19), 22272–22281 (2016).
33. V. M. Agranovich and D. M. Basko, “Resonance energy transfer from a semiconductor quantum dot to an organic matrix,” JETP Lett. 69(3), 250–254 (1999) [Pis’ma Zh. Eksp. Teor. Fiz. 69(3), 232–235 (1999)].
34. V. L. Ginzburg and A. A. Rukhadze, Waves in a Magnetoactive Plasma (Nauka, Moscow, 1975).
35. M. G. Kucherenko and V. M. Nalbandyan, “Modification of the spectrum the dipole electric polarizability of a cluster composed of two transmitting spherical nanoparticles in an external magnetic field,” Vestn. Orenb. Gos. Univ. 162(1), 118–126 (2014).
36. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).
37. M. G. Kucherenko and V. M. Nalbandyan, “Formation of the spectral contour width of nanoparticles plasmon resonance by electron scattering on phonons and a boundary surface,” Eurasian Phys. Tech. J. 15(2(30)), 37–39 (2018).