DOI: 10.17586/1023-5086-2022-89-01-17-23
УДК: 634.7, 62-791.2, 535.3
Simple optical criterion of the ripeness level of strawberries
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Будаговская О.Н., Козлова И.И. Простой оптический критерий степени зрелости плодов земляники // Оптический журнал. 2022. Т. 89. № 1. С. 17–23. http://doi.org/10.17586/1023-5086-2022-89-01-17-23
Budagovskaya O.N., Kozlova I.I. Simple optical criterion of the ripeness level of strawberries [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 1. P. 17–23. http://doi.org/10.17586/1023-5086-2022-89-01-17-23
O. N. Budagovskaya and I. I. Kozlova, "Simple optical criterion of the ripeness level of strawberries," Journal of Optical Technology. 89(1), 12-16 (2022). https://doi.org/10.1364/JOT.89.000012
Reflection spectra from strawberries of four botanical varieties at seven different ripeness levels were investigated in the visible range of 400–700 nm. Reflection spectra of unripe berries exhibit two maxima at wavelengths of 550 and 700 nm and a characteristic dip between them in the range of chlorophyl absorption at 670–680 nm. In the course of ripening, a significant transformation of the first maximum occurs up until its complete disappearance from the spectra of overripe berries, along with its shift to the long wavelength range of the visible spectrum. A gradual increase in the reflection coefficient at the wavelength of 670 nm and smoothening of the spectral curve of ripe and overripe berries are observed at the same time. We established that the ratio of reflection coefficients at the wavelengths of 670 and 630 nm, R670/R630, can serve as a universal ripeness criterion, including the final ripening stages.
reflection spectrum, garden strawberries, ripeness levels, criterion of ripeness
OCIS codes: 000.1430, 120.5700, 170.6510
References:1. R. Azodanlou, C. Darbellay, J.-L. Luisier, J.-C. Villettaz, and R. Amadò, “Changes in flavour and texture during the ripening of strawberries,” Eur. Food Res. Technol. 218(2), 167–172 (2004).
2. H.-F. Jia, Y.-M. Chai, C.-L. Li, D. Lu, J.-J. Luo, L. Qin, and Y.-Y. Shen, “Abscisic acid plays an important role in the regulation of strawberry fruit ripening,” Plant Physiol. 157(1), 188–199 (2011).
3. M. E. Olsson, J. Ekvall, K. E. Gustavsson, J. Nilsson, D. Pillai, I. Sjöholm, U. Svensson, B. Åkesson, and M. G. L. Nyman, “Antioxidants, low molecular weight carbohydrates, and total antioxidant capacity in strawberries (Fragaria x ananassa): effects of cultivar, ripening, and storage,” J. Agric. Food Chem. 52(9), 2490–2498 (2004).
4. I. P. Anan’ev, Instrumentation and Methods in Agrophysics (Izdatel’stvo PIYAF, St. Petersburg, 2007).
5. G. A. Carter and A. K. Knapp, “Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration,” Am. J. Bot. 88, 677–684 (2001).
6. A. Budagovsky, O. Budagovskaya, F. Lenz, A. Keutgen, and K. Alkayed, “Analysis of the functional state of cultivated plants by means of interference of scattered light and chlorophyll fluorescence,” J. Appl. Bot. 76, 115–120 (2002).
7. E. V. Kuvaldin and V. G. Surin, “Specialized photometer for measuring pathological and physiological changes in plants,” J. Opt. Technol. 65(5), 362–365 (1998) [Opt. Zh. 65(5), 43–46 (1998)].
8. E. V. Kuvaldin, “Remote and contact devices for diagnosing the state of plants,” J. Opt. Technol. 80(11), 695–702 (2013) [Opt. Zh. 80(11), 71–90 (2013)].
9. O. N. Budagovskaya, A. V. Budagovskii, and I. A. Budagovskii, “Automated system for control of structural transformation of plant tissue,” Instrum. Exp. Tech. 50(1), 161–162 (2007).
10. E. J. Sacks and D. V. Shaw, “Optimum allocation of objective color measurements for evaluating fresh strawberries,” J. Am. Soc. Hortic. Sci. 119(2), 330–334 (1994).
11. T. Hasing, L. F. Osorio, and V. M. Whitaker, “Estimation of genetic parameters and gains for color traits of strawberry,” Euphytica 186(2), 303–311 (2012).
12. D. R. Bittner, “Optical properties of selected fruit maturity,” Trans. ASAE St. Joseph. Mich. 11(4), 534–536 (1968).
13. B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review,” Postharvest Biol. Technol. 46(2), 99–118 (2007).
14. V. I. Starovoitov, A. M. Bashilov, and A. A. Anderzhanov, Automation of Quality Control of Potatoes, Vegetables, and Fruits (VO Agropromizdat, Moscow, 1987).
15. H. Wang, J. Peng, C. Xie, Y. Bao, and Y. He, “Fruit quality evaluation using spectroscopy technology: a review,” Sensors 15(5), 11889–11927 (2015).
16. E. Arendse, O. A. Fawole, L. S. Magwaza, and U. L. Opara, “Non-destructive prediction of internal and external quality attributes of fruit with thick rind: a review,” J. Food Eng. 217, 11–23 (2018).
17. N. N. Wang, D. W. Sun, Y. C. Yang, H. Pu, and Z. Zhu, “Recent advances in the application of hyperspectral imaging for evaluating fruit quality,” Food Anal. Methods 9(1), 178–191 (2016).
18. C. W. Kwak, D. H. Choung, S. R. Min, S. W. Kim, J. R. Liu, and H. Chung, “Fast determination of the ripeness stage of strawberries using infrared spectroscopy combined with principal component analysis,” Anal. Sci. 23(7), 895–899 (2007).
19. S. Weng, S. Yu, R. Dong, F. Pan, and D. Liang, “Nondestructive detection of storage time of strawberries using visible/near-infrared hyperspectral imaging,” Int. J. Food Prop. 23(1), 269–281 (2020).
20. G. ElMasry, N. Wang, A. ElSayed, and M. Ngadi, “Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry,” J. Food Eng. 81(1), 98–107 (2007).
21. J. G. Tallada, M. Nagata, and T. Kobayashi, “Non-destructive estimation of firmness of strawberries (Fragaria × ananassa Duch.) using NIR hyperspectral imaging,” Environ. Control Biol. 44(4), 245–255 (2006).
22. I. I. Kozlova, “Innovative systems for cultivation of garden strawberry,” Plodovod. Yagodovod. Ross. 22(2), 111–116 (2009).
23. T. Fossen, S. Rayyan, and Ø. M. Andersen, “Dimeric anthocyanins from strawberry (Fragaria ananassa) consisting of pelargonidin 3-glucoside covalently linked to four flavan-3-ols,” Phytochemistry 65(10), 1421–1428 (2004).
24. X. Q. Yue, Z. Y. Shang, J. Y. Yang, L. Huang, and Y.-Q. Wang, “A smart data-driven rapid method to recognize the strawberry maturity,” Inf. Process. Agric. 7(4), 575–584 (2020).