DOI: 10.17586/1023-5086-2022-89-01-54-62
УДК: 535.33, 621.373, 535
Acousto-optic spatial frequency filter operating in the intermediate region of acousto-optic interaction
Full text on elibrary.ru
Publication in Journal of Optical Technology
Котов В.М., Аверин С.В., Карачевцева М.В., Яременко Н.Г. Акустооптический фильтр пространственных частот, оперирующий в промежуточной области акустооптического взаимодействия // Оптический журнал. 2022. Т. 89. № 1. С. 54–62. http://doi.org/10.17586/1023-5086-2022-89-01-54-62
Kotov V.M., Averin S.V., Karachevtseva M.V., Yaremenko N.G. Acousto-optic spatial frequency filter operating in the intermediate region of acousto-optic interaction [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 1. P. 54–62. http://doi.org/10.17586/1023-5086-2022-89-01-54-62
V. M. Kotov, S. V. Averin, M. V. Karachevzeva, and N. G. Yaremenko, "Acousto-optic spatial frequency filter operating in the intermediate region of acousto-optic interaction," Journal of Optical Technology. 89(1), 38-43 (2022). https://doi.org/10.1364/JOT.89.000038
The characteristics of an acousto-optic spatial frequency filter designed for processing of two-dimensional images and operation in the intermediate region of acousto-optic diffraction are investigated. The advantage of such filters over filters operating in a Bragg regime is the possibility of operation at significantly lower acoustic frequencies, which allows the passband of spatial frequencies to be increased and the limiting resolution to be decreased. Transfer functions of diffraction orders are obtained. The use of the first diffraction order is demonstrated to allow selection of the two-dimensional image contour. The two-dimensional image edge enhancement of the image transmitted by optical emission at a wavelength of 0.63×10−4cm is experimentally demonstrated using a TeO2 spatial filter operating at a frequency of 15 MHz.
acousto-optic diffraction, intermediate regime, selection of two-dimensional image contour
OCIS codes: 070.1060, 070.2615, 070.6110
References:1. T. Y. Young and K.-S. Fu, Handbook of Pattern Recognition and Image Processing (Academic Press, Inc., New York, 1986).
2. H. Stark, Applications of Optical Fourier Transforms (Academic Press, New York, 1982).
3. A. A. Akaev and S. A. Maiorov, Optical Methods for Data Processing (Vysshaya Shkola, Moscow, 1988).
4. V. I. Balakshy and V. B. Voloshinov, “Acousto-optic image processing in coherent light,” Quantum Electron. 35(1), 85–90 (2005).
5. V. I. Balakshy, V. B. Voloshinov, T. M. Babkina, and D. E. Kostyuk, “Optical image processing by means of acousto-optic spatial filtration,” J. Mod. Opt. 52(1), 1–20 (2005).
6. V. B. Voloshinov, B. Linde, and K. B. Yushkov, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 9(4), 341–347 (2007).
7. V. I. Balakshy and D. E. Kostyuk, “Acousto-optic image processing,” Appl. Opt. 48(7), C24–C32 (2009).
8. V. I. Balakshy, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-optics (Radio i Svyaz’, Moscow, 1985).
9. J. Xu and R. Stroud, Acousto-optic Devices: Principles, Design and Applications (Wiley, New York, 1992).
10. A. A. Yablokova, A. S. Machikhin, V. I. Batshev, V. E. Pozhar, and S. V. Boritko, “Analysis of transfer function dependence on configuration of acousto-optic interaction in uniaxial crystals,” Proc. SPIE. 11032, 1103215 (2019).
11. V. M. Kotov and S. V. Averin, “Two-dimensional image edge enhancement using two orders of Bragg diffraction,” Quantum Electron. 50(3), 305–308 (2020).
12. V. M. Kotov, G. N. Shkerdin, and S. V. Averin, “Formation of the two-dimensional image edge in two diffraction orders in the process of triple Bragg diffraction,” J. Commun. Technol. Electron. 61(11), 1090–1094 (2016).
13. V. M. Kotov, G. N. Shkerdin, and V. I. Grigor’evskii, “Polarization features of the 2D contouring of an optical image under double Bragg diffraction conditions,” J. Commun. Technol. Electron. 58(3), 226–232 (2013).
14. V. M. Kotov, S. V. Averin, and E. V. Kotov, “Selection of a two-dimensional image edge using polarisation-independent acousto-optic diffraction,” Quantum Electron. 48(6), 573–576 (2018).
15. V. M. Kotov, S. V. Averin, E. V. Kotov, and G. N. Shkerdin, “Acousto-optic filters based on the superposition of diffraction fields [Invited],” Appl. Opt. 57(10), C83–C92 (2018).
16. V. M. Kotov, “Processing of 2D images using the Bragg diffraction,” J. Commun. Technol. Electron. 65(11), 1122–1127 (2020).
17. V. I. Balakshy, “Acousto-optical cell as a spatial filter,” Radiotekh. Elektron. 29(8), 1610–1616 (1984).
18. V. Yu. Rakovskii and A. S. Shcherbakov, “Multiphonon Bragg light scattering at the elastic waves,” Zh. Tekh. Fiz. 60(7) 107–114 (1990).
19. V. I. Balakshii and T. G. Kulish, “Higher orders of light diffraction by ultrasound in the intermediate regime of acoustooptical coupling,” Opt. Spectrosc. 82(4), 613–618 (1997) [Opt. Spektrosk. 82(4), 663–668 (1997)].
20. V. I. Balakshy and T. G. Kulish, “High orders of light diffraction by ultrasound in the intermediate regime of acousto-optic interaction. I. Theoretical consideration,” Acust. Acta Acust. 84(5), 830–836 (1998).
21. V. I. Balakshy, I. V. Krylov, T. G. Kulish, and V. Y. Molchanov, “High orders of light diffraction by ultrasound in the intermediate regime of acousto-optic interaction. II. Experimental results,” Acust. Acta Acust. 84(5), 837–843 (1998).
22. R. Pieper, D. Koslover, and T.-C. Poon, “Exact solution for four-order acousto-optic Bragg diffraction with arbitrary initial conditions,” Appl. Opt. 48(7), C141–C150 (2009).
23. A. V. Zakharov, V. B. Voloshinov, and E. Blomme, “Intermediate and Bragg acousto-optic interaction in elastically anisotropic medium,” Ultrasonics 51(6), 745–751 (2011).
24. A. S. Shcherbakov and A. O. Arellanes, “Features of the three-phonon acousto-optical interaction due to elastic waves of finite amplitude and an advanced spectrum analysis of optical signals,” J. Opt. Soc. Am. B 33(9), 1852–1864 (2016).
25. V. M. Kotov, S. V. Averin, G. N. Shkerdin, and A. I. Voronko, “Two-dimensional image edge enhancement in the two-phonon diffraction,” Quantum Electron. 40(4), 368–370 (2010).
26. N. S. Piskunov, Differential and Integral Calculus Volume 2 (Nauka, Moscow, 1970).
27. V. M. Kotov, “High-frequency two-color splitting of laser radiation,” Opt. Spectrosc. 77(3), 437–441 (1994) [Opt. Spektrosk. 77(3), 493–497 (1994)].
28. M. P. Shaskol’skaya, Acoustic Crystals (Nauka, Moscow, 1982).
29. V. A. Kizel’ and V. I. Burkov, Crystal Gyrotropy (Nauka, Moscow, 1980).