DOI: 10.17586/1023-5086-2022-89-01-63-73
УДК: 535.8
Can the corrosion-penetration depth into a metal be estimated from an image of the corroded surface?
Full text on elibrary.ru
Publication in Journal of Optical Technology
Пронин С.П., Умбетов С.В. Исследование возможности оценки глубины проникновения коррозии в металл по изображению корродированной поверхности // Оптический журнал. 2022. Т. 89. № 1. С. 63–73. http://doi.org/10.17586/1023-5086-2022-89-01-63-73
Pronin S.P., Umbetov S.V. Can the corrosion-penetration depth into a metal be estimated from an image of the corroded surface? [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 1. P. 63–73. http://doi.org/10.17586/1023-5086-2022-89-01-63-73
S. P. Pronin and S. V. Umbetov, "Can the corrosion-penetration depth into a metal be estimated from an image of the corroded surface?," Journal of Optical Technology. 89(1), 44-51 (2022). https://doi.org/10.1364/JOT.89.000044
This paper presents experimental studies of the penetration of corrosion into the metallic surface of laboratory samples of St3 steel. The results of laboratory studies of the possibility of estimating the corrosion-penetration depth into the metal are presented, using the proportions of the color components in a digital image of the corroded surface, and it is established how the variation of the corrosion-penetration depth into the metal depends on the median contrasts in a digital image of a corroded surface. The factors that affect the radiance variation of the RGB components in an image of a corroded surface are theoretically analyzed.
steel corrosion, corroded surface, histogram, contrast, corrosion penetration depth
OCIS codes: 100.0100, 120.0120
References:1. A. B. Kosygin, V. N. Khanin, K. I. Gosudarev, and I. V. Fomina, “The detection of hidden leaks using a system for monitoring a water-supply network,” Vodosnabzh. Sanit. Tekh. (4), 22–26 (2010).
2. A. B. Kosygin, I. V. Fomina, V. M. Goritski, and D. P. Khromov, “Technique for estimating the technical status and remaining lifetime of water-supply pipelines and canalized networks of Moscow,” Vodosnabzh. Sanit. Tekh. (3), 31–36 (2010).
3. S. V. Baranov, A. B. Kosygin, V. N. Khanin, T. V. Korabel’nikov, and I. V. Fomina, “Instrumental monitoring of the structural water-supply and canalization networks of Moscow,” Vodosnabzh. Sanit. Tekh. (10), 42–48 (2011).
4. S. A. Ganiyu, O. T. Olurin, K. A. Ajibodu, B. S. Badmus, and A. O. Ajayi, “Assessment of the degree of external corrosion of buried water pipelines and source identification of heavy metals due to surrounding soil conditions in humid environment,” Environ. Earth Sci. 77(12), 443 (2018).
5. A. F. Matvienko, G. S. Korzunin, V. E. L. Loskutov, and S. A. Babkin, “Attempt to monitor the status of gas-supply mains by an electromagnetic-acoustic method,” Defektoskopiya (9), 28–37 (2015).
6. J. Zhang, A. Jiang, Y. Xin, and J. He, “Numerical investigation on multiphase erosion-corrosion problem of steel of apparatus at a well outlet in natural gas production,” J. Fluids Eng. Trans. ASME 140 (12), 121301 (2018).
7. I. N. Egorov and D. A. Kadkhim, “Using mobile robots for intratube diagnosis of pipelines with a variable cross section,” Élektron. Zh. Neftegazov. Delo (3), 73–83 (2011).
8. Y. Utanohara and M. Murase, “Influence of flow velocity and temperature on flow accelerated corrosion rate at an elbow pipe,” Nucl. Eng. Des. 342, 20 (2019).
9. X. Si, R. Zhang, Q. Xu, and K. Zhou, “Corrigendum: Effects of local velocity components on flow-accelerated corrosion at 90◦ elbow,” Mater. Res. Express 6(3), 039503 (2019).
10. N. Sh. Yakhyaev and A. K. Kamolov, “Laboratory methods of measurement and corrosion-monitoring devices,” Molodo Uch. (12), 455–458 (2016).
11. V. S. Kondratenko, A. N. Kobysh, A. Yu. Rogov, D. A. Burlya˘ı, and Yu. I. Sakunenko, “Method of increasing the accuracy with which the placement of a water-leakage site is determined by using a sorption hydrosensor cable,” Kontrol’. Diagn. (6), 51–55 (2018).
12. A. N. Kovalenko, “System of determining the defect site on a pipeline,” Kontrol’. Diagn. (2), 27–35 (2016).
13. S. Yu. Trutaev and D. V. Inshakov, “Intratube monitoring of pipelines of industrial enterprises,” Kontrol’. Diagn. (12), 18–23 (2017).
14. A. S. Toporets, The Optics of a Rough Surface (Mashinostroenie L.O., Leningrad, 1988).
15. “Methods of studying corrosion processes,” https://protectcor.narod.ru/index0713.htm.
16. GOST R 52870-2007, National Standard of the Russian Federation, “Methods of displaying collective-use information” (Standartinform, Moscow, 2008).
17. M. M. Miroshnikov, Theoretical Foundations of Optoelectronic Devices (Izd. Lan’, St. Petersburg, 2020).
18. G. G. Ishanin and V. P. Chelibanov, Optical-Radiation Detectors (Izv. Lan’, St. Petersburg, 2014).
19. S. V. Umbetov and S. P. Pronin, “Study of the dependence of the corrosion thickness of a metal on the spectral components of reflected light,” Polzunov Almanac (2), 77–79 (2016).
20. R. T. Porfir’eva, A. A. Yusupova, T. G. Akhmetov, A. N. Masli, and A. I. Khatsrinov, “Study of the influence of a ferric chloride additive on the properties of polysulfide compounds,” Vest. Kazansk. Tekhnolog. Univ. (2), 56–60 (2008).
21. R. Vadzinski, Statistical Computations in the Excel Medium (Piter, St. Petersburg, 2008).
22. F. E. Grubbs and G. Beck, “Extension of sample sizes and percentage points for significance tests of outlying observations,” Technometrics 14(4), 847–854 (1972).
23. GOST R 8.736-2011, “Direct multiple measurements. Methods of processing the results of measurements. Fundamental propositions” (Standartinform, Moscow, 2019), https://beta.docs.cntd.ru/document/1200089016.