DOI: 10.17586/1023-5086-2022-89-10-106-117
УДК: 681.78
Modeling and optimization of optical designs with composite holographic elements
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ахметов Д.М., Муслимов Э.Р., Харитонов Д.Ю., Павлычева Н.К., Гуськов И.А., Гильфанов А.Р. Моделирование и оптимизация оптических схем с композитными голограммными элементами // Оптический журнал. 2022. Т. 89. № 10. С. 106–117. http://doi.org/10.17586/1023-5086-2022-89-10-106-117
Akhmetov D.M., Muslimov E.R., Kharitonov D.Yu., Pavlycheva N.K., Guskov I.A., Gilfanov A.R. Modeling and optimization of optical designs with composite holographic elements [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 10. P. 106–117. http://doi.org/10.17586/1023-5086-2022-89-10-106-117
D. M. Akhmetov, E. R. Muslimov, D. Yu. Kharitonov, N. K. Pavlycheva, I. A. Guskov, and A. R. Gilfanov, "Modeling and optimization of optical designs with composite holographic elements," Journal of Optical Technology. 89(10), 633-641 (2022). https://doi.org/10.1364/JOT.89.000633
Subject of study. Optical designs based on composite holographic elements composed of several zones with independently optimized parameters are investigated in this study. Aim of study. Generalized methods for the design and modeling of schemes for the determination of the parameters of the composite hologram and the characteristics of the optical design obtained using this hologram are considered. Method. The methods are based on using the Welford equation and Kogelnik’s theory for the simultaneous calculation of aberrations and diffraction efficiency in several zones. Main results. An optical design of an augmented reality holographic display of the waveguide type operating in the range of 480–620 nm with a field of view of 8∘×6∘ and an exit pupil of 8 mm is presented as a test case. An increase in the minimum diffraction efficiency over the field of view by 13.8% and a reduction in the angular size of the spot diagram by 0.4′ owing to the use of the proposed methods are demonstrated for a holographic element divided into four zones. The visual effect of using such an element in the display scheme is also demonstrated. Practical significance. The obtained results enable new optical systems with enhanced and more uniform brightness and spatial resolution of the formed image, increased field of view, and extended operating spectral range to be designed.
composite hologram, augmented reality, volume-phase hologram, diffraction efficiency, computer modeling
Acknowledgements:The research was supported by the grant of RSF No. 21-79-00082.
OCIS codes: 050.2065, 230.1950, 090.2820
References:1. C. Palmer and E. Loewen, Diffraction Gratings Handbook (Newport Corporation, Rochester, 2014).
2. H. J. Caulfield, Handbook of Optical Holography (Academic Press, New York, 1979).
3. I. A. Gus’kov, E. R. Muslimov, A. N. Mel’nikov, and A. R. Gil’fanov, “Design procedure for a holographic display considering the diffraction efficiency of a volume phase hologram,” J. Opt. Technol. 87(11), 650–657 (2020) [Opt. Zh. 87(11), 21–30 (2020)].
4. E. R. Muslimov, N. K. Pavlycheva, and I. A. Guskov, “Concept of composite holographic optical elements,” Photonics Russia 7, 586–599 (2020).
5. E. Muslimov, D. Akhmetov, D. Kharitonov, I. Guskov, and N. K. Pavlycheva, “Composite waveguide holographic display,” Proc. SPIE, 12138, 121380S (2022).
6. W. Welford, “A vector raytracing equation for hologram lenses of arbitrary shape,” Opt. Commun. 14, 322–323 (1975).
7. H. Kogelnik, “Coupled wave analysis for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
8. P. Lalanne, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851 (1998).
9. T. Loukina, “Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer,” Opt. Eng. 43(11), 2658 (2004).
10. V. Lakshminarayanan, “Zernike polynomials: a guide,” J. Mod. Opt. 58(7), 1678 (2011).
11. J. P. Rolland, K. P. Thompson, H. Urey, and M. Thomas, “See-through head-worn display (HWD) architectures,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, Cham, 2016).
12. C. Yu, Y. Peng, Q. Zhao, H. Li, and X. Liu, “Highly efficient waveguide display with space-variant volume holographic gratings,” Appl. Opt. 56, 9390–9397 (2017).
13. V. B. Perriere, “Understanding waveguide-based architecture and ways to robust monolithic optical combiner for smart glasses,” Proc. SPIE 10676, 106761D (2018).
14. Y. A. Grad, V. V. Nikolaev, S. B. Odinokov, and A. B. Solomenko, “Augmented reality indicator based on a lightguide plate with transmitting DOE,” in Holography. Science and Applications: XIV International Conference HOLOEXPO-2017 (2017), pp. 133–137.