DOI: 10.17586/1023-5086-2022-89-10-37-41
УДК: 608.4
Mirror coating based on aluminum and copper alloy with a lutetium oxide protective coating
Full text on elibrary.ru
Publication in Journal of Optical Technology
Галиев Р.Р., Гайнутдинов И.С., Гильфанов А.Р., Нуруллин И.З. Зеркальное покрытие на основе сплава алюминия и меди с защитным покрытием из оксида лютеция // Оптический журнал. 2022. Т. 89. № 10. С. 37–41. http://doi.org/10.17586/1023-5086-2022-89-10-37-41
Galiev R.R., Gainutdinov I.S., Gilfanov A.R., Nurullin I.Z. Mirror coating based on aluminum and copper alloy with a lutetium oxide protective coating [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 10. P. 37–41. http://doi.org/10.17586/1023-5086-2022-89-10-37-41
R. R. Galiev, I. S. Gainutdinov, A. R. Gil’fanov, and I. Z. Nurullin, "Mirror coating based on aluminum and copper alloy with a lutetium oxide protective coating," Journal of Optical Technology. 89(10), 586-588 (2022). https://doi.org/10.1364/JOT.89.000586
Subject of study. This study investigated a mirror coating composed of aluminum and copper alloy on the surface of a substrate with a lutetium oxide protective coating on top of the reflective layer. Aim of study. The application of a mirror coating composed of aluminum and copper alloy and its protection with lutetium oxide was examined. The structure of the optical mirror coating enables an increased reflection coefficient in all operating spectral ranges. Method. A mirror coating made of aluminum and copper alloy with a lutetium oxide protective layer was applied to a substrate of an optical material using vacuum deposition by the VU-1A setup. The thicknesses of the layers were controlled during deposition using a quartz control system. Main results. The optimum percentage ratio of materials in the aluminum and copper alloy for the reflective coating layer deposition and the thicknesses ratio of the adhesive, reflective, and protective layers were determined. The possibility of using lutetium oxide as a protective layer was established. Practical significance. The obtained results enable the development of reflective coatings for optical mirrors with high reflection coefficients for use in various modern optical and optoelectronic devices and in systems operating in different spectral ranges.
spectrum region, spectral characteristic, interference filter, optical mirror, lutetium oxide
OCIS codes: 140.0140, 250.0250, 310.0310, 040.3060
References:1. J. T. Cox and G. Hass, “Aluminium mirrors Al2 O3 protected, with high reflectance at normal but greatly decreased reflectance at higher angles of incidence in the 8–12 μm region,” Appl. Opt. 17(3), 333–334 (1978).
2. T. N. Patrusheva, V. A. Fedyaev, N. Yu. Snezhko, and L. E. Karelina, “Protective insulating films and methods for their preparation,” Zh. Sib. Fed. Univ. 9(2), 254–267 (2016).
3. B. N. Senik, “Enhancement of optical and performance parameters of coatings with application of innovative film-forming materials,” Kontenant (3), 37–42 (2014).
4. M. A. Rodionov, “Properties of rare-earth oxide films and silicon MOS structures based on them,” Doctoral thesis (Samarskii Gosudarstvennyi Universitet, Samara, 2005), p. 133.
5. G. V. Zemskov and N. I. Artyushenko, “Vapor phase aluminum deposition,” Zashch. Met. (4), 473–474 (1970).
6. R. R. Galiev, I. S. Gainutdinov, I. Z. Nurullin, and A. R. Gil’fanov, “Optical mirror,” Russian patent 208984 (2022).
7. E. Zych, J. Trojan-Piegza, and P. Dorenbos, “Radioluminescence of Lu2 O3 : Eu nanocrystalline powder and vacuum-sintered ceramic,” Radiat. Meas. 38(4), 471–474 (2004).
8. Yu. V. Yermolayeva, M. V. Dobrotvorskaya, V. L. Karbovskii, T. I. Korshikova, and A. V. Tolmachev, “Morphology of Lu2 O3 nanocrystalline coatings on spherical particles of silica,” Nanosist. Nanomater. Nanotekhnol. 6(3), 829–838 (2008).
9. A. Lempicki, C. Brecher, P. Szupryczynski, H. Lingertat, V. V. Nagarkar, S. V. Tipnis, and S. R. Miller, “A new lutetia-based ceramic scintillator for X-ray imaging,” Nucl. Instrum. Methods Phys. Res. Sect. A 488(3), 579–590 (2002).
10. A. Pereira, T. Martin, M. Levinta, and C. Dujardin, “Low-absorption, multi-layered scintillating material for high resolution real-time X-ray beam analysis,” J. Mater. Chem. 3, 4954–4959 (2010).
11. T. Wiktorczyk, “Optical properties of electron beam deposited lutetium oxide thin films,” Opt. Appl. 31(1), 83–92 (2001).
12. T. Wiktorczyk and J. Poprawska, “Optical constants and dielectric permittivity of lutetium oxide films deposited with an electron gun,” in Proceedings of the IEEE 10th International Symposium on Electrets (1999), pp. 709–712.
13. T. Wiktorczyk, “The effect of thickness and temperature on dielectric properties of lutetium oxide thin films grown by electron-beam deposition on quartz,” Thin Solid Films 522, 463–467 (2012).
14. R. Moncorge, Y. Guyot, C. Kränkel, K. Lebbou, and A. Yoshikawa, “Mid-infrared emission properties of the Tm3+ -doped sesquioxide crystals Y2 O3 , Lu2 O3 , Sc2 O3 and mixed compounds (Y,Lu,Sc)2 O3 around 1.5-, 2- and 2.3-μm,” J. Lumin. 241, 118537 (2022).
15. S. G. Topping, C. H. Park, S. K. Rangan, and V. K. Sarin, “Lutetium oxide coatings by PVD,” Mater. Res. Soc. Symp. Proc. 1038, 115–120 (2007).