ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-12-19-37

УДК: 535-2

Statistical channel modeling of intensity fluctuations in the turbulent underwater wireless optical communication system

For Russian citation (Opticheskii Zhurnal):

Mandeep Singh, Maninder Lal Singh, Rajandeep Singh. Статистическое моделирование флуктуаций интенсивности в канале подводной системы беспроводной оптической связи при наличии турбулентности среды. Statistical channel modeling of intensity fluctuations in the turbulent underwater wireless optical communication system [на англ. яз.] // Оптический журнал. 2022. Т. 89. № 12. С. 19–37. http://doi.org/ 10.17586/1023-5086-2022-89-12-19-37

 

Mandeep Singh, Maninder Lal Singh, Rajandeep Singh. Статистическое моделирование флуктуаций интенсивности в канале подводной системы беспроводной оптической связи при наличии турбулентности среды. Statistical channel modeling of intensity fluctuations in the turbulent underwater wireless optical communication system [in English] // Opticheskii Zhurnal. 2022. М. 89. № 12. З. 19–37. http://doi.org/ 10.17586/1023-5086-2022-89-12-19-37

For citation (Journal of Optical Technology):

Mandeep Singh, Maninder Lal Singh, and Rajandeep Singh, "Statistical channel modeling of intensity fluctuations in a turbulent underwater wireless optical communication system," Journal of Optical Technology. 89(12), 708-721 (2022). https://doi.org/10.1364/JOT.89.000708

Abstract:

Subject of Study. The statistical modeling of received intensity fluctuations due to temperatureinduced turbulence and the random presence of air bubbles in the Underwater Wireless Optical Communication channel is presented. Purpose of Study. Temperature-induced turbulence and air bubbles induce severe intensity fluctuations in the received optical signal which degrade the Underwater Wireless Optical Communication link performance. Method. Therefore, to characterize the turbulent water channel, an experimental setup has been designed in the laboratory which considers uniform and gradient-based temperature variations along with variable-sized bubble populations. To estimate the effect of these random variations in the water channel, a statistical approach has been
followed which characterize the nature of the recorded observations. Main Results. It is observed that the behavior of random irradiance fluctuations due to uniform and gradient-based temperature variations in Underwater Wireless Optical Communication link follows single-lobe Gaussian distribution. Moreover, with the incorporation of air bubbles the received irradiance fluctuations no longer follows single-lobe Gaussian distribution but follows a multi-lobe Gaussian distribution i.e., Gaussian mixture model which is the weighted sum of Gaussian distribution. The accuracy of the proposed Underwater Wireless Optical Communication link models is verified by conducting the Goodness of Fit test, the observed confidence interval of 95% authenticates the proposed model. Also, the performance of Gaussian mixture model based Underwater Wireless Optical Communication link has been evaluated in terms of bit error rate, the acceptable bit error rate levels between 10–14 to 10–10 have been observed. The proposed Underwater Wireless Optical Communication with Gaussian mixture model completely depicts thermally uniform, gradient-based nonuniform, and variable air bubbles population in the ocean. Practical Significance. The Gaussian mixture model can further be utilized by the researchers to estimate numerous performance parameters of the turbulent Underwater Wireless Optical Communication links using advanced modulation schemes, diversity techniques, and paves a valuable way to address the future aspects of research in this area.

Keywords:

uniform temperature variations, temperature gradients, air bubbles, Goodness of Fit, Bit error rate

Acknowledgements:
Department of Electronics and Information Technology, Ministry of Electronics and Information Technology, Government of India (MEITY-PHD-2383).

OCIS codes: 010.0010, 010.4455.

References:

1. Zeng Z., Fu S., Zhang H. et al. A Survey of Underwater Optical Wireless Communications // IEEE Commun Surv Tutorials. 2017. V. 19. № 1. P. 204–238.

2. Akyildiz I.F., Pompili D., Melodia T. Underwater acoustic sensor networks : research challenges // Ad Hoc Networks. 2005. V. 3. P. 257–279.
3. Lacovara P. High-Bandwidth Underwater Communications // Mar Technol Soc J. 2008. V. 42. № 1. P. 93–102.
4. Lanzagorta M. Underwater communications // Synthesis Lectures on Communications / Ed. William Tranter. Morgan Claypool Publishers, San Rafael, California (USA). 2012. V. 6. 1–120 p.
5. Tsonev D., Chun H., Rajbhandari S. et al. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μ LED // IEEE Photonics Technol Lett. 2014. V. 26. № 7. P. 637–640.
6. Chi Y.-C., Hsieh D.-H., Tsai C.T. et al. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM // Opt Express. 2015. V. 23. № 10. P. 13051.
7. Cochenour B.M., Mullen L.J., Laux A.E. Characterization of the Beam-Spread Function for Underwater Wireless Optical Communications Links // IEEE J Ocean Eng. 2008. V. 33. № 4. P. 513–521.
8. Singh M., Gill H.S., Singh M.L. Experimental evaluation of performance of underwater free space optical link in the presence of air bubbles // 2018 6th Ed Int Conf Wirel Networks Embed Syst WECON 2018 – Proc. IEEE. 2018. P. 58–62.
9. Gabriel C., Khalighi M.-A., Bourennane S. et al. Monte-Carlo-based channel characterization for underwater optical communication systems // J OPT COMMUN NETW. 2013. V. 5. № 1. P. 1–12.
10. Tang S., Dong Y., Zhang X. Impulse response modeling for underwater wireless optical communication links // IEEE Trans Commun. 2014. V. 62. № 1. P. 226–234.
11. Sahoo R., Sahu S.K., Shanmugam P. Estimation of the channel characteristics of a vertically downward optical wireless communication link in realistic oceanic waters // Opt Laser Technol. Elsevier Ltd, 2019. V. 116. № 2. P. 144–154.
12. Krishnan K., Gauni S., Manimegalai C.T et al. Ambient noise analysis in underwater wireless communication using laser diode // Opt Laser Technol. Elsevier Ltd, 2019. V. 114. № 2. P. 135–139.
13. Boyle E.A., Keigwin L. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature // Nature. 1987. V. 330. № 6143. P. 35–40.
14. Korotkova O., Farwell N., Shchepakina E. et al. Light scintillation in oceanic turbulence // Waves in Random and Complex Media. 2012. V. 22. № May 2012. P. 260–266.
15. Bissonnette L.R. Atmospheric scintillation of optical and infrared waves: a laboratory simulation // Appl Opt. 1977. V. 16. № 8. P. 2242.
16. Jamali M.V., Salehi J.A., Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO Scheme // IEEE Trans Commun. 2017. V. 65. № 3. P. 1176–1192.
17. Jamali M.V., Chizari A., Salehi J.A. Performance analysis of multi-hop underwater wireless optical communication systems // IEEE Photonics Technol Lett. 2017. V. 29. № 5. P. 462–465.
18. Johnson B.D., Cooke R.C. Bubble populations and spectra in coastal waters: A photographic approach // J Geophys Res. 1979. V. 84. № C7. P. 3761.
19. Singh M., Singh M. L., Singh G. et al. Modeling and performance evaluation of underwater wireless optical communication system in the presence of different sized air bubbles // Opt Quantum Electron. Springer US, 2020. V. 52. № 12. P. 1–15.
20. Jamali M.V., Khorramshahi P., Tashakori A. et al. Statistical distribution of intensity fluctuations for Underwater Wireless Optical Channels in the presence of air bubbles // Iran Workshop on Communication and Information Theory (IWCIT’16), Tehran, Iran. 2016. P. 1–6.
21. Zedini E., Oubei H. M., Kammoun A. et al. A new simple model for underwater wireless optical channels in the presence of air bubbles // 2017 IEEE Glob Commun Conf GLOBECOM 2017 – Proc. 2017. V. 2018–Janua. № Ml. P. 1–6.
22. Oubei H.M., Zedini E., Elafandy R.T. et al. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems // Opt Lett. 2017. V. 42. № 13. P. 2455.
23. Zedini E., Oubei H.M., Kammoun A. et al. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems // IEEE Trans Commun. 2019. V. 67. № 4. P. 2893–2907.
24. Born M., Wolf E. Principles of optics // Cambridge University Press. 1999. V. 8. № 2. Р. 181–182.

25. Oubei H.M., Elafandy R.T., Park K.-H. et al. Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations // 30th Annu Conf IEEE Photonics Soc IPC 2017. 2017. V. 2017–Janua. P. 441–448.
26. Shin M., Park K.H., Alouini M.S. Statistical modeling of the impact of underwater bubbles on an optical wireless channel // IEEE Open J Commun Soc. 2020. V. 1. № May. P. 808–818.
27. Jamali M.V., Mirani A., Parsay A. et al. Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations // IEEE Trans Commun. 2018. V. 66. № 10. P. 4706–4723.
28. Vali Z., Gholami A., Ghassemlooy Z. et al. System parameters effect on the turbulent underwater optical wireless communications link // Optik (Stuttg). Elsevier. 2019. V. 198. № July. P. 163153.