DOI: 10.17586/1023-5086-2022-89-12-03-12
УДК: 535.41
Two-beam interferometry with a definitive phase-shift sign
Full text on elibrary.ru
Publication in Journal of Optical Technology
Агашков А.В. Двухлучевая интерферометрия с определённостью знака фазового сдвига // Оптический журнал. 2022. Т. 89. № 12. С. 3–12. http://doi.org/10.17586/1023-5086-2022-89-12-03-12
Agashkov A.V. Two-beam interferometry with a definitive phase-shift sign [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 12. P. 3–12. http://doi.org/10.17586/1023-5086-2022-89-12-03-12
A. V. Agashkov, "Two-beam interferometry with a definitive phase-shift sign," Journal of Optical Technology. 89(12), 697-703 (2022). https://doi.org/10.1364/JOT.89.000697
Subject of study. The shift direction of interference fringes depending on the sign of the local phase shift introduced to one of the interfering waves was investigated in terms of two-beam interferometry. Aim of study. This study aimed to validate the fact that two-beam interferometry based on a single interferogram enables definitive determination of the phase-shift sign using the shift direction of the interference fringe. Method. Positions of the interference fringes and their shifts were calculated considering the phase distribution of interfering waves in the observation plane. The Mach–Zehnder interferometer was used to experimentally confirm the obtained theoretical results. Two closely adjacent substrates were used as objects. A subwavelength layer of a standard material was deposited on a part of the surface of one substrate, and a layer of metamaterial was deposited on the part of the second substrate. Main results. Expressions determining the direction and amplitude of the shift of interference fringes depending on the sign and amplitude of the local phase shift in one of the two interfering waves with a plane or spherical front were obtained. Strict rules of interference fringe shift depending on the sign of the phase shift were formulated based on the calculations. Results of the experiment using the Mach–Zehnder interferometer with different combinations of beams with spherical and plane wavefronts confirmed the theoretical calculations. Practical significance. Classic interferometric methods require significant time and the application of complex experimental procedures to determine the sign of the phase shift. The application of the results obtained in this study enables the determination of the sign of the introduced local phase shift based on a single interferogram without additional time expenditures. Thus, the method investigating the metamaterial layers of a subwavelength thickness is significantly simplified.
two-beam interferometry, local phase shift, interference band shift, subwave layer, negative refractive index
Acknowledgements:The research was partially supported by Belarusian Republican Fundamental Research Foundation (pproject No. Ф18АЗ-003).
OCIS codes: 260.3160, 160.3918, 310.6628
References:1. M. Born and E. Wolf, Fundamentals of Optics (Nauka, Moscow, 1973).
2. Rastogi P.K. Holographic interferometry. Berlin: Springer-Verlag, 1994. 329 p.
3. Kreis T. Handbook of holographic interferometry: Optical and digital methods. Weinheim: Wiley-VCH, 2005. 542 p.
4. Sirohi R.S. Optical methods of measurement: Wholefield techniques. N.Y.: CRC Press, 2009. 316 p.
5. Servin M., Quiroga J.A., Padilla J.M. Fringe Pattern analysis for optical metrology: Theory, algorithms, and applications. Weinheim: Wiley-VCH, 2014. 344 p.
6. Servín M., Kujawinska M., Padilla J.M. Modern fringe pattern analysis in interferometry // Handbook of Optical Engineering. Vol. 2 / Eds. D. Malacara, B.J. Thompson. N.Y.: CRC Press, 2018. P. 101–152.
7. Smith D.R., Schultz S., Markos P., Soukoulis C.M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients // Phys. Rev. B. 2002. V. 65. P. 195104–1951041–5. http://doi.org/ 10.1103/PhysRevB.65.195104.
8. Shalaev V.M., Cai W., Chettiar U.K. et al. Negative index of refraction in optical metamaterials // Opt. Lett. 2005. V. 30. № 24. P. 3356–3358. http://doi.org/10.1364/OL.30.003356.
9. Cai W., Chettiar U.K., Yuan H.-K. et al. Metamagnetics with rainbow colors // Opt. Express. 2007. V. 15. № 6. P. 3333–3341. http://doi.org/10.1364/OE.15.003333.
10. Chettiar U.K., Kildishev A.V., Yuan H.-K. et al. Dual-band negative index metamaterial: double negative at 813nm and single negative at 772nm // Opt. Lett. 2007. V. 32. № 12. http://doi.org/ 10.1364/OL.32.001671.
11. Xiao S., Drachev V.P., Kildishev A.V. et al. Loss-free and active optical negative-index metamaterials // Nature. 2010. V. 466. P. 735–738. http://doi.org/10.1038/nature09278.
12. Grahn P., Shevchenko A., Kaivola M. Interferometric description of optical metamaterials // New J. Phys. 2013. V. 15. P. 113044–113044–13. http://doi.org/ 10.1088/1367-2630/15/11/113044.
13. Agashkov A. Two-beam interferometry for characterizing subwavelength layers with a negative optical path length // Opt. Commun. 2020. V. 462. P. 125306–125306–4. http://doi.org/ 10.1016/j.optcom.2020.125306.
14. Goodman J.W. Introduction to Fourier optics. New York: McGraw-Hill, 1996. 441 p.
15. Fang N., Lee H., Sun C., Zhang X. Subdiffraction-limited optical imaging with a silver superlens // Science. 2005. V. 308. P. 534–537. http://doi.org/10.1126/science.1108759.
16. Wangberg R., Elser J., Narimanov E.E., Podolskiy V.A. Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media // J. Opt. Soc. Am. B. 2006. V. 23 P. 498–505. http://doi.org/10.1364/JOSAB.23.000498.
17. Dionne J.A., Verhagen E., Polman A., Atwater H.A. Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries // Opt. Express. 2008. V. 16. № 23. P. 19001–19017. http://doi.org/ 10.1364/OE.16.019001.
18. Pastuszczak A., Stolarek M., Kotyński R. Engineering the point spread function of layered metamaterials // Opto-Electron. Rev. 2013. V. 21. № 4. P. 355–366. http://doi.org/ 10.2478/s11772-013-0106-6.
19. Ott P., Al Shakhs M.H., Lezec H.J., Chau K.J. Flat lens criterion by small-angle phase // Opt. Express. 2014. V. 22. № 24. P. 29340–29355. http://doi.org/10.1364/OE.22.029340.
20. Agashkov A., Belyi V., Binhussain M.A., Kazak N., Agabekov V., Khilo N. Negative phase shift in a layered metal-dielectric structure: theory and experiment // 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). 7–12 Sept. 2015. P. 592–594. http://doi.org/ 10.1109/MetaMaterials.2015.7342597.
21. A. V. Agashkov and N. S. Kazak, “Application of a differential polarization interferometer for measuring of the optical path length in thin metamaterial layers with reflection and absorption losses,” Instrum. Exp. Tech. 62, 532–588 (2019).
22. Agashkov A.V., Kazak N.S., Agabekov V.E., Alshammari M.S.O, Binhussain M.A. Differential polarization interferometer // Patent US 9778019. 2017.