ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-12-75-81

УДК: 535.243, 538.958, 535.016

Boron nitride nanolayers in optical spectroscopic materials

For Russian citation (Opticheskii Zhurnal):

Кужаков П.В. Бор-нитридный нанослой в оптических материалах для спектроскопии // Оптический журнал. 2022. Т. 89. № 12. С. 75–81. http://doi.org/10.17586/1023-5086-2022-89-12-75-81

 

Kuzhakov P.V. Boron nitride nanolayers in optical spectroscopic materials [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 12. P. 75–81. http://doi.org/10.17586/1023-5086-2022-89-12-75-81

For citation (Journal of Optical Technology):

P. V. Kuzhakov, "Boron nitride nanolayers in optical spectroscopic materials," Journal of Optical Technology. 89(12), 748-751 (2022). https://doi.org/10.1364/JOT.89.000748

Abstract:

Subject of study. This paper discusses nanostructures such as protective windows, plane-parallel sheets, and model plane-parallel sheets used in the development of modern fixed and mobile optical emission spectrometers and composition analyzers for rapid elemental analysis and determination of metal grades. These instruments are capable of determining the elemental compositions of pure metals and multi-component alloys within a few seconds. This paper also discusses a model depositional nanostructure: boron nitride nanotubes deposited in a single layer on an MgF2 optical-crystal substrate being used as a prototype spark-protective window in an optical emission spectrometer. Aim of study. We aim to determine whether a boron nitride nanotube nanostructure deposited on the high-wear parts of protective windows in an optical emission spectrometer can be used to stabilize instrument operations in the ultraviolet spectral region. Methods. This paper uses a density functional theory with atomic basis sets (Hartree-Fock HF/STO-3G SP). Main results. In this paper, we discuss the use of boron nitride nanotubes deposited in a single layer as a special protective coating for spectrometers. Note that deposition of boron nitride nanolayers on spectrometer components such as protective windows has practical benefits in spectroscopy because the boron nitride material used in the fabrication of washers to hold wires and rods in analyzer instruments is resistant to high temperatures. Practical significance. The solutions proposed herein are specifically relevant to optical emission spectrometers used in metal analysis and can be used to generate requirements for upgrades to improve the service life and measurement stability and provide wear-resistant protective windows for such instruments.

Keywords:

spectrometer, ultraviolet range, boron-nitride nanotube

Acknowledgements:

The author is thankful to Kamanina N.V., Dr.Sc. (physics and mathematics), and his colleagues from the laboratory "Photophysics of nanostructured materials and devices" and other universities for useful discussion. The presented results are partially associated with the research supported by the project "Nanocoating-GOI" (2012-2015) in the context of works on national technological bases, and also by International Russian-Israeli project "Adaptation" (2017).     

OCIS codes: 010.0280; 010.1280; 010.3640

References:

1. R. A. Andrievski˘ı and A. V. Ragulya, Nanostructured Materials (Akademiya, Moscow, 2005).
2. R. A. Andrievski, “Brittle nanomaterials: hardness and superplasticity,” Bull. Russ. Acad. Sci.: Phys. 73, 1222–1226 (2009) [Izv. Ross. Akad. Nauk, Ser. Fiz. 73(9), 1290–1294 (2009)].
3. R. A. Andrievski˘ı, “Nanomaterials: concept and current problems,” Ross. Khim. Zh. 46(5), 50–56 (2002).
4. A. Rubio, J. L. Corkill, and M. L. Cohen, “Theory of graphitic boron nitride nanotubes,” Phys. Rev. B 49, 5081–5084 (1994).
5. X. Blase, A. Rubio, S. Louie, and M. Cohen, “Stability and band gap constancy of boron nitride nanotubes,” Europhys. Lett. 28, 335–340 (1994).
6. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, “Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge,” Phys. Rev. Lett. 76, 4737–4740 (1996).
7. N. G. Chopra, R. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, “Boron nitride nanotubes,” Science 269(5226), 966–967 (1995).
8. D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, and H. Yusa, “Nanotubes in boron nitride laser heated at high pressure,” Appl. Phys. Lett. 69, 2045–2047 (1996).
9. M. Terrones, W. Hsu, H. Terrones, J. Zhang, S. Ramos, J. Hare, R. Castillo, K. Prassides, A. Cheetham, H. Kroto, and D. R. M. Walton, “Metal particle catalysed production of nanoscale BN structures,” Chem. Phys. Lett. 259, 568–573 (1996).
10. D. Lee, B. Lee, K. H. Park, H. J. Ryu, S. Jeon, and S. H. Hong, “Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling,” Nano Lett. 15(2), 1238–1244 (2015).
11. Q. Weng, Y. Ide, X. Wang, X. Wang, C. Zhang, X. Jiang, Y. Xue, P. Dai, K. Komaguchi, Y. Bando, and D. Goldberg, “Design of BN porous sheets with richly exposed (002) plane edges and their application as TiO2 visible light sensitizer,” Nano Energy 16, 19–27 (2015).
12. J. Wang, V. K. Kayastha, Y. K. Yap, Z. Fan, J. G. Lu, Z. Pan, I. N. Ivanov, A. A. Puretzky, and D. B. Geohegan, “Low temperature growth of boron nitride nanotubes on substrates,” Nano Lett. 5, 2528–2532 (2005).
13. A. N. Enyashin, G. Seifert, and A. L. Ivanovski˘ı, “Electronic, structural, and thermal properties of a nanocable consisting of carbon and BN nanotubes,” J. Exp. Theor. Phys. Lett. 80, 608–611 (2004).
14. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
15. Y. Bando, K. Ogawa, and D. Golberg, “Insulating ‘nanocables’: Invar Fe–Ni alloy nanorods inside BN nanotubes,” Chem. Phys. Lett. 347, 349–354 (2001).
16. E. Hernandez, C. Goze, P. Bernier, and A. Rubio, “Elastic properties of C and Bx Cy Nz composite nanotubes,” Phys. Rev. Lett. 80, 4502–4505 (1998).
17. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, “Boron nitride nanotubes and nanosheets,” ACS Nano 4, 2979–2993 (2010).
18. D. Golberg, Y. Bando, K. Kurashima, and T. Sato, “Synthesis and characterization of ropes made of BN multiwalled nanotubes,” Scr. Mater. 44, 1561–1565 (2001).
19. A. Charlier, E. McRae, R. Heyd, M. Charlier, and D. Moretti, “Classification for double-walled carbon nanotubes,” Carbon 37, 1779–1783 (1999).
20. A. V. Belikov, Yu. E. Lozovik, A. G. Nikolaev, and A. M. Popov, “Double-wall nanotubes: classification and barriers to walls relative rotation, sliding and screwlike motion,” Chem. Phys. Lett. 385(1–2), 72–78 (2004).
21. Y. A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M. Terrones, and M. S. Dresselhaus, “Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment,” Chem. Phys. Lett. 398, 87–92 (2004).
22. E. G. Rakov, “Preparation of thin carbon nanotubes by catalytic pyrolysis on a support,” Russ. Chem. Rev. 76, 1–22 (2007).
23. K. I. Tarasov, The Spectroscope, 2nd ed. (Wiley, New York, 1974) [Mashinostroenie, Leningrad, 1977].
24. E. N. Kablov, “Innovation at the All-Russian Scientific Research Institute for Aviation Materials Federal State Unitary Enterprise, a Russian Federation State Science Center for implementation of the Strategic Areas for Development of Materials and Materials Processing Technology by 2030,” Aviats. Mater. Tekhnol. 1(34), 3–33 (2015).
25. S. Kobe, K. Žužek, E. Sarantopoulou, Z. Samardžija, Z. Kollia, and A. C. Cefalas, “Nanocrystalline Sm–Fe composites fabricated by pulse laser deposition at 157 nm,” Appl. Surf. Sci. 248, 349–354 (2005).
26. S. Amoruso, G. Ausanio, C. De Lisio, V. Iannotti, M. Vitiello, X. Wang, and L. Lanotte, “Synthesis of nickel nanoparticles and nanoparticles magnetic films by femtosecond laser ablation in vacuum,” Appl. Surf. Sci. 247, 71–75 (2005).
27. Yu. A. Bykovski˘ı, V. N. Nevolin, and V. Yu, “Fominski˘ı,” in Ion and Laser Implantation of Metallic Materials (Energoatomizdat, Moscow, 1991).

28. N. V. Kamanina, P. Ya. Vasil’ev, and V. I. Studenov, “Features of nanostructured coatings obtained by laser deposition of carbon nanotubes,” Tech. Phys. Lett. 37, 106–108 (2011). [Pis’ma Zh. Tekh. Fiz. 37(3), 23–29 (2011)].
29. N. V. Kamanina, P. Ya. Vasil’ev, V. I. Studenov, and K. Yu. Bogdanov, “Enhancing the mechanical surface strength of “soft” materials for the UV and IR ranges and increasing their transmission spectrum: model MgF2 –nanotube system,” J. Opt. Technol. 77(2), 145–147 (2010) [Opt. Zh. 77(2), 84–86 (2010)].
30. N. V. Kamanina, K. Y. Bogdanov, P. Y. Vasilyev, V. I. Studeonov, A. E. Pujsha, A. V. Shmidt, A. V. Krestinin, and F. Kajzar, “Nanoobjects–containing structures for aerospace and laser switching systems,” Nonlinear Opt., Quantum Opt. 40, 277–285 (2010).
31. N. V. Kamanina, P. Ya. Vasil’ev, and V. I. Studenov, “Using nanotechnologies in optics: on the possibility of enhancing the transparency and increasing the mechanical surface strength of materials in the UV and IR regions,” J. Opt. Technol. 75(12), 806–808 (2008) [Opt. Zh. 75(12), 57–60 (2008)].
32. P. V. Kuzhakov and N. V. Kamanina, “Spectral investigations and wettability of nanostructured potassium bromide, sodium chloride, and magnesium fluoride single crystals,” Opt. Spectrosc. 117(4), 643–646 (2014) [Opt. Spektrosk. 117(4), 134–137 (2014).
33. N. V. Kamanina, P. V. Kuzhakov, and P. Ya. Vasil’ev, “Protective coating for hygroscopic optical materials based on laser-deposited nanotubes for optoelectronics and medical technology,” Russian Federation patent 2543694 (2013).
34. N. Kamanina, A. Toikka, Y. Barnash, P. Kuzhakov, and D. Kvashnin, “Advanced and functional structured ceramics: MgF2 and ZnS,” Materials 15, 4780 (2022).
35. V. Lisitsyn, L. Lisitsyna, A. Dauletbekova, M. Golkovskii, Z. Karipbayev, D. Musakhanov, A. Akilbekov, M. Zdorovets, A. Kozlovskiy, and E. Polisadova, “Luminescence of the tungsten-activated MgF2 ceramics synthesized under the electron beam,” Nucl. Instrum. Methods Phys. Res., Sect. B 435, 263–267 (2018).
36. R. Eglitis, A. I. Popov, J. Purans, and R. Jia, “First principles hybrid Hartree-Fock-DFT calculations of bulk and (001) surface F centers in oxide perovskites and alkaline-earth fluorides,” Low Temp. Phys. 46, 1206–1212 (2020).