ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-12-82-89

УДК: 535.015, 535.32

Aluminum oxide (Al2O3) optical films and their applications in the ultraviolet region of the spectrum

For Russian citation (Opticheskii Zhurnal):

Котликов Е.Н., Лавровская Н.П., Тихомир Колев Тенев, Илко Кирилов Милушев. Исследование и применение оптических плёнок оксида алюминия Al2O3 в ультрафиолетовом диапазоне спектра // Оптический журнал. 2022. Т. 89. № 12. С. 82–89. http://doi.org/10.17586/1023-5086-2022-89-12-82-89

 

Kotlikov E.N., Lavrovskaya N.P., Tenev T.K., Milushev I.K. Aluminum oxide (Al2O3) optical films and their applications in the ultraviolet region of the spectrum [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 12. P. 82–89. http://doi.org/10.17586/1023-5086-2022-89-12-82-89

For citation (Journal of Optical Technology):

E. N. Kotlikov, N. P. Lavrovskaya, T. K. Tenev, and I. K. Milushev, "Aluminum oxide (Al2O3) optical films and their applications in the ultraviolet region of the spectrum," Journal of Optical Technology. 89(12), 752-756 (2022). https://doi.org/10.1364/JOT.89.000752

Abstract:

Subject of study. We describe the results of a study of aluminum oxide (Al2O3) optical films on a quartz substrate in the ultraviolet and visible regions of the spectrum. Aim of study. The optical constants of the films were measured spectrophotometrically based on the reflection and transmission spectra. Methods. Absorption was taken into account using what we believe to be a novel method for correcting film spectra. Main results. The absorption spectra were used to determine the extinction coefficients of the films, and the absorption-free spectra in the 0.25–0.85 µm region were used to determine the indices of refraction. Practical significance. The resulting constants were used in the design and fabrication of high-reflectivity mirrors for use in the ultraviolet at 0.22–0.23 µm.

Keywords:

optical films, spectra, reflection, transmission, absorption, refractive index, extinction coefficient, synthesis, ultraviolet mirrors

Acknowledgements:

The research was carried out within the grant No. КП-06-Н57/5 of 16.11.2021 of Academy of sciences of Bulgaria and grant of the Ministry of science and higher education of the Russian Federation No. FSFR-2020-0004.

OCIS codes: 120.01 20; 300.0300; 310.0310

References:

1. T. N. Krylova, Interference Coatings (Mashinostroenie, Leningrad, 1973).
2. P. V. Seredin, D. L. Goloshchapov, A. N. Lukin, A. D. Bondarev, I. N. Arsent’ev, M. G. Rastegaeva, and I. S. Tarasov, “Optical devices constructed using ultra-thin Al2 O3 films on GaAs (100) substrates,” Kondens. Sredy Mezhfaznye Granitsy 16(2), 196–200 (2014).
3. A. N. Tropin, “Film-forming materials for thin-layer optical coatings: new problems and prospects (review paper),” Usp. Prikl. Fiz. 4(2), 206–211 (2016).
4. E. M. Voronkova, B. N. Grechushnikov, G. I. Distler, and I. P. Petrov, Optical Materials for Infrared Technology (Nauka, Moscow, 1965).
5. M. J. Weber, Handbook of Optical Materials (CRC Press, New York, 2003).
6. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1965) [Nauka, Moscow (1973)].
7. L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
8. R. B. Morgunov, O. V. Koplak, and A. V. Dmitriem, Physical and Chemical Research Methods (EAOI, Moscow, 2013).
9. E. N. Kotlikov and E. V. Yurkovets, “Method of determining the optical constants of absorbing films: substrates with no absorption,” J. Opt. Technol. 85(1), 48–52 (2018). [Opt. Zh. 85(1), 59–64 (2018)] .
10. E. N. Kotlikov, Yu. A. Novikova, and I. I. Kovalenko, “FilmManager software for design and analysis of interference coatings,” Inf.-Upr. Sist. 3(76), 51–59 (2015).
11. F. P. Vasil’ev, Numerical Methods for Solving Extremal Problems (Nauka, Moscow, 1980).
12. E. N. Kotlikov, “A spectrophotometric method for determination of the optical constants of materials,” J. Opt. Technol. 83(2), 77–80 (2016) [Opt. Zh. 83(2), 1–5 (2016)].
13. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnova, Optical Constants of Natural and Artificial Media (Khimiya, Leningrad, 1984).
14. E. N. Kotlikov, A. N. Kotlikov, and E. V. Yurkovets, “Software for obtaining optical constants of films,” in Modeling and Situational Quality Control of Complex Systems (Proceedings of Saint Petersburg State University of Aviation and Space Instrumentation (GUAP) Scientific Session) (GUAP, St. Petersburg, 2016), pp. 253–257.
15. E. N. Kotlikov and E. V. Yurkovets, “Analysis of the capabilities for use of numerical methods to determine the optical constants of films,” in Proceedings of the IVth Conference on Photonics and Information Optics (MIFI, Moscow, 2015). pp. 346–347.
16. M. A. Okatov, Optical Engineer’s Handbook (Izdatel’stvo Politekhnika, St. Petersburg, 2004).
17. S. V. Mutilin and T. Khasanov, “The refractive index of homogeneous SiO2 thin films,” Opt. Spectrosc. 105(3), 461–465 (2008) [Opt. Spektrosk. 105(3), 505–510 (2008)].