DOI: 10.17586/1023-5086-2022-89-02-03-10
УДК: 535.37, 548.313
Luminescence response of neodymium ions to phase transformations in yttria-based solid-solution nanopowders
Full text on elibrary.ru
Publication in Journal of Optical Technology
Соломонов В.И., Осипов В.В., Спирина А.В., Макарова А.С., Шитов В.А., Максимов Р.Н. Люминесцентный отклик иона неодима на фазовые превращения в нанопорошках твёрдых растворов на основе оксида иттрия // Оптический журнал. 2022. Т. 89. № 2. С. 3–10. http://doi.org/10.17586/1023-5086-2022-89-02-03-10
Solomonov V. I., Osipov V.V., Spirina A.V., Makarova A.S., Shitov V.A., Maksimov R.N. Luminescence response of neodymium ions to phase transformations in yttria-based solid-solution nanopowders [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 2. P. 3–10. http://doi.org/10.17586/1023-5086-2022-89-02-03-10
V. I. Solomonov, V. V. Osipov, A. V. Spirina, A. S. Makarova, V. A. Shitov, and R. N. Maksimov, "Luminescence response of neodymium ions to phase transformations in yttria-based solid-solution nanopowders," Journal of Optical Technology. 89(2), 66-70 (2022). https://doi.org/10.1364/JOT.89.000066
Subject of study. In this paper, we describe the luminescence properties of nanopowders of composition (Nd0.008Y0.992)2O3, (Nd0.008Y0.992)2O3+6mol%ZrO2, and (Nd0.008Gd0.496Y0.496)2O3+5mol.%ZrO2 with various percentages of monoclinic and cubic phases. Method. Photoluminescence and pulsed cathodoluminescence spectra are recorded, followed by interpretation of the results obtained. Main results. In the process of studying the luminescence bands corresponding to the 4F3/2→4I9/2 and 4F3/2→4I11/2 energy transitions for neodymium ions in nanopowder crystalline lattices, we identify several spectroscopic and kinetic properties that can be used to identify the substances and determine the crystal phases present. We show that there is slight broadening of the spectral lines in the continuum base of the 4F3/2→4I11/2 manifold; the intensity level below which the bands merge into a continuum increases as the amount of structural disorder caused by the zirconium- and gadolinium-ion dopants in the Y2O3 increases. Practical significance. The distinctive features of the photoluminescence spectra and the kinetics of neodymium-ion luminescence in the 4F3/2→4I9/2 and 4F3/2→4I11/2 bands can be used for unique identification of the substances present and determination of the crystal phases thereof; this will be of practical interest in the development of high-bandwidth ceramic active elements.
nanopowder, photoluminescence, pulsed cathodoluminescence kinetics, disordered structure, spectral line and band widths
Acknowledgements:The research was conducted with partial financial support of Russian Foundation for Basic Research and Sverdlovsk region under the scope of the scientific project No. 20-48-660039, and also with partial financial support of Russian Foundation for Basic Research under the scope of the scientific project No. 20-08-00018a.
OCIS codes: 300.6280, 160.3380, 160.4236
References:1. V. V. Osipov, V. I. Solomonov, V. A. Shitov, R. N. Maksimov, K. E. Luk’yashin, and A. N. Orlov, “Ceramic with disordered crystalline structure for laser active elements,” Opt. Atmos. Okeana 25(3), 207–209 (2012).
2. S. N. Bagaev, V. V. Osipov, E. V. Pestryakov, V. I. Solomonov, V. A. Shitov, R. N. Maksimov, A. N. Orlov, and V. V. Petrov, “Laser ceramic with disordered crystalline structure,” Prikl. Mekh. Tekh. Fiz. 56, 180–189 (2015).
3. Y. Sato, T. Taira, and A. Ikesue, “Spectral parameters of Nd3+ -ion in the polycrystalline solid-solution composed of Y3 Al5 O12 and Y3 Sc2 Al3 O12 ,” Jpn. J. Appl. Phys. 42, 5071 (2003).
4. J. Ma, J. Wang, D. Shen, A. Ikesue, and D. Tang, “Generation of sub-100-fs pulses from a diode-pumped Yb:Y3 ScAl4 O12 ceramic laser,” Chin. Opt. Lett. 15(12), 121403 (2017).
5. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+ :Y2 O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101–071103 (2007).
6. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+ :Lu2 O3 and nondoped Y2 O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
7. V. V. Osipov, V. I. Solomonov, V. A. Shitov, V. V. Lisenkov, A. V. Spirina, and E. E. Luk’yashin, “Phase transition in yttrium-oxide nanopowders,” Ogneupory Tekh. Keram. (1–2), 56–61 (2010).
8. V. V. Osipov, V. I. Solomonov, and A. V. Spirina, “Luminescence study of neodymium-doped yttrium aluminates,” J. Opt. Technol. 78(6), 12–408, (2011) [Opt. Zh. 78(6), 81–87 (2011)].
9. V. V. Osipov, V. I. Solomonov, A. V. Spirina, P. V. Toropova, V. A. Shitov, A. V. Chukin, and S. O. Cholakh, “Determining the phase composition of yttrium oxide nanopowders by means of luminescence,” Bull. Russ. Acad. Sci.: Phys. 81(9), 1105–1109 (2017) [Izv. RAN. Ser. Fiz. 81(9), 1227–1231 (2017)].
10. P. Toropova, A. Spirina, V. Solomonov, V. Shitov, A. Chukin, and S. Cholakh, “Luminescent response to the phase composition of Nd3+ :Y2 O3 -Al2 O3 system,” IOP Conf. Ser.: Mater. Sci. Eng. 168(1), 012055 (2017).
11. V. I. Solomonov, A. V. Spirina, and A. Makarova, “Rise and decay of pulsed cathodoluminescence in Nd:YAG single crystals and ceramics,” Opt. Spectrosc. 129, 1018–1022 (2021) [Opt. Spektrosk. 129, 857–861 (2021)].
12. V. I. Solomonov, A. V. Spirina, and A. Makarova, “Features of the pulsed cathodoluminescence kinetics of neodymium ion in yttrium-aluminum garnet and yttrium oxide,” Fiz. Tverd. Tela 63, 1812–1816 (2021).
13. A. A. Kaminski, Laser Crystals (Springer, Berlin, 1981) [Nauka, Moscow, 1975].
14. V. V. Osipov, V. I. Solomonov, A. V. Spirina, V. A. Shitov, P. V. Toropova, and A. N. Orlov, “The energy structure of a neodymium ion in monoclinic yttria,” Opt. Spectrosc. 118, 723–726 (2015) [Opt. Spektrosk. 118(5), 756–759 (2015)].