DOI: 10.17586/1023-5086-2022-89-02-43-51
УДК: 535.8
New topological charge parallel measurement method of optical vortex based on computer-generated holography
Full text on elibrary.ru
Publication in Journal of Optical Technology
Xianpeng Liu, Sujuan Huang, Wancai Xie, Zhonghua Pei. New topological charge parallel measurement method of optical vortex based on computer-generated holography (Новый метод параллельного измерения топологического заряда в оптических вихрях на основе компьютерной голографии) [на англ. яз.] // Оптический журнал. 2022. Т. 89. № 2. С. 43–51. http://doi.org/10.17586/1023-5086-2022-89-02-43-51
Xianpeng Liu, Sujuan Huang, Wancai Xie, Zhonghua Pei. New topological charge parallel measurement method of optical vortex based on computer-generated holography (Новый метод параллельного измерения топологического заряда в оптических вихрях на основе компьютерной голографии) [in English] // Opticheskii Zhurnal. 2022. V. 89. № 2. P. 43–51. http://doi.org/10.17586/1023-5086-2022-89-02-43-51
Xianpeng Liu, Sujuan Huang, Wancai Xie, and Zhonghua Pei, "Topological charge parallel measurement method for optical vortices based on computer-generated holography," Journal of Optical Technology. 89(2), 94-100 (2022). https://doi.org/10.1364/JOT.89.000094
The generation, propagation, and application of optical vortex have been major researched topics in recent years. In this study, a parallel measurement approach is presented to analyze the topological charge of single and composite optical vortices with the help of the spatial light modulator. The topological charges of single and composite optical vortices are measured by observing the Gaussian point position of the diffracted field, which solves the difficult problem of measuring the composite optical vortex and the optical vortex with large topological charge. The presented method is feasible and has strong expansibility. More composite optical vortex can be measured easily by using different computer-generated holography. When the optical vortex is measured correctly, it can present a Gaussian point, which retains the characteristics of optical vortex. Therefore, this point will be important in the optical vortex communication.
optical vortex, parallel measurement, computer-generated hologram
Acknowledgements:This work was funded by the National Natural Science Foundation of China (NSFC) (61475098). This work was supported by 111 Project (D20031).
OCIS codes: 090.1995, 200.4740
References:2. Heckenberg N.R., McDuff R., Smith C.P., Rubinsztein-Dunlop H., Wegener M.J. Laser beams with phase singularities // Opt. Quant.Electron. 1992. V. 24. P. S951–S962.
3. Curtis J.E., Grier D.G. Structure of optical vortices // Phys. Rev. Lett. 2003. V. 90. P. 133901.
4. Chi H., Jiang S., Ou J., Jin T. Comprehensive study of orbital angular momentum shift keying systems with a CNN-based image identifier // Opt. Commun. 2020. V. 454. P. 124518.
5. Ndagano B., Nape I., Cox M.A., Rosales-Guzman C., Forbes A. Creation and detection of vector vortex modes for classical and quantum communication // J. Light. Technol. 2018. V. 36. № 2. P. 292–301.
6. Hassan M. M., Kabir M.A., Hossain M.N., Biswas B., Paul B.K., Ahmed K. Photonic crystal fiber for robust orbital angular momentum transmission: design and investigation // Opt. Quantum Electronics. 2020. V. 52. № 1. P. 8.1–8.14.
7. Mphuthi N., Gailele L., Litvin I., Dudley A., Botha R., Forbes A. Free-space optical communication link with shape-invariant orbital angular momentum Bessel beams // Appl. Opt. 2019. V. 58. № 16. P. 4258–4264.
8. Dong M., Lu X., Zhao C., Cai Y., Yang Y. Measuring topological charge of partially coherent elegant Laguerre–Gaussian beam // Opt. Express. 2018. V. 26. P. 33035–33043.
9. Shen D., Zhao D. Measuring the topological charge of optical vortices with a twisting phase // Opt. Lett. 2019. V. 44. P. 2334–2337.
10. Hosseini-Saber S.M.A., Akhlaghi E.A., Saber A. Diffractometry-based vortex beams fractional topological charge measurement // Opt. Lett. 2020. V. 45. P. 3478–3481.
11. Flamini F., Spagnolo N., Sciarrino F. Photonic quantum information processing: a review // Rep. Prog. Phys. 2019. V. 82. № 1. P. 016001.
12. Li X., Tai Y., Lv F., Nie Z. Measuring the fractional topological charge of LG beams by using interference intensity analysis // Opt. Commun. 2015. V. 334. P. 235–239.
13. Khajavi B., Galvez E.J. Determining topological charge of an optical beam using a wedged optical flat // Opt. Lett. 2017. V. 42. № 8. P. 1516–1519.
14. Narag J.P., Hermosa N. Probing higher orbital angular momentum of Laguerre–Gaussian beams via diffraction through a translated single slit // Phys. Rev. Applied. 2019. V. 11. № 5. P. 054025.
15. Sztul H.I., Alfano R.R. Double-slit interference with Laguerre–Gaussian beams // Opt. Lett. 2006. V. 31. № 7. P. 999–1001.
16. Deng D., Li Y., Han Y., Ye J., Liu Y., Zhao H. Detection of multiplexing orbital angular momentum states by single objective // Opt. Commun. 2018. V. 428. P. 84–88.
17. Zheng S., Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings // Sci. Rep. 2017. V.7. P. 40781.
18. Huang S., He C., Wang T. Generation of sidelobe-free optical vortices utilizing object-oriented computer generated holograms // J. Opt. 2014. V. 16. № 3. P. 035402.
19. Huang S., Miao Z., He C., Pang F., Li Y., Wang T. Composite vortex beams by coaxial superposition of Laguerre–Gaussian beams // Opt. Lasers. Eng. 2016. V. 78. P. 132–139.
20. Tudor R., Mihailescu M., Kusko C., Paun I.A., Nan A.E., Kusko M. Simultaneous and spatially separated detection of multiple orbital angular momentum states // Opt. Commun. 2016. V. 368. P. 141–149.
21. Shao W., Huang S., Chen M., Liu X., Xie W. Research of optical vortex’s energy efficiency and diffraction angle based on spatial light modulator // Opt. Eng. 2017. V. 56. № 8. P. 086113.