DOI: 10.17586/1023-5086-2022-89-03-20-27
УДК: 681.785.5
Investigation of a spectral lens for the formation of a normalized difference vegetation index NDVI0.705
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бланк В.А., Скиданов Р.В., Досколович Л.Л. Исследование спектральной линзы для формирования вегетационного индекса NDVI0,705 // Оптический журнал. 2022. Т. 89. № 3. С. 20–27. http://doi.org/ 10.17586/1023-5086-2022-89-03-20-27
Blank V.A., Skidanov R.V., Doskolovich L.L. Investigation of a spectral lens for the formation of a normalized difference vegetation index NDVI0.705 [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 3. P. 20–27. http://doi.org/ 10.17586/1023-5086-2022-89-03-20-27
V. A. Blank, R. V. Skidanov, and L. L. Doskolovich, "Investigation of a spectral lens for the formation of a normalized difference vegetation index NDVI0.705," Journal of Optical Technology. 89(3), 137-141 (2022). https://doi.org/10.1364/JOT.89.000137
Subject of study. A new type of diffractive optical element separating radiation at the wavelengths of 705 and 750 nm into the ±1 diffraction orders is investigated as a basis for a sensor for the detection of the normalized difference vegetation index NDVI0.705. Method. The study was performed as a natural experiment using a white light source with a continuous spectrum. Main results. A diffractive optical element separating radiation at the wavelengths of 705 and 750 nm into the ±1 diffraction orders was investigated. Using this optical element allows index images to be obtained directly instead of through the complex acquisition of a full hyperspectral image for the detection of NDVI0.705 in the region of a near-infrared slope. The diffractive optical element was fabricated using direct laser writing in a photoresist. The height of the formed microrelief was 4 µm, which implies that a combination of diffractive and refractive properties of this element contribute to the image formation process. The suggested term for these diffractive optical elements is a spectral diffractive lens. A laboratory setup was assembled based on the fabricated spectral diffractive lens to confirm the possibility of operating this lens in the imaging mode. In first experiments, a high-power halogen lamp behind an opaque screen with holes with diameters of 0.4–0.5 µm (individual and in linearly positioned groups) was used to simulate small-scale radiating objects. Two diffraction orders were recorded on a light-sensitive matrix, namely, −1 for radiation with a wavelength of 705 nm and +1 for radiation with a wavelength of 750 nm. The similarity of the geometrical parameters of the images of the group of sources in the +1 and −1 orders confirmed the possibility of using this spectral diffractive lens in the imaging mode. Therefore, a slit aperture was mounted instead of the linearly positioned sources in the next experiment. Scanning of a section of a color table with subsequent assembly of an index image was performed through this aperture. Practical significance. The spectral diffractive lens proposed in this work can be used to create simple compact sensors for the real-time monitoring of vegetation cover and for specialized agricultural equipment.
diffractive lens, spectral lens, vegetation index, hyperspectrometer, diffractive optical element
Acknowledgements:OCIS codes: 050.1970, 040.1880, 050.1965, 120.4820, 110.0110
References:1. Mulla D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps // Biosystems Eng. 2013. V. 114. № 4. P. 358–371.
2. Xue J., Su B. Significant remote sensing vegetation indices: A review of developments and applications // J. Sensors. 2017. V. 2017. P. 1–17.
3. Gold K.M., Townsend P.A., Chlus A., Herrmann I., Couture J.J., Larson E.R., Gevens A.J. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and earrly blight in potato // Remote Sens. 2020. V. 12. P. 286.
4. Zhang J., Pu R., Huang W., Yuan L., Luo J., Wang J. Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses // Field Crops Res. 2012. V. 134. P. 165–174.
5. Mahlein A.K., Rumpf T., Welke P., Dehne H.W., Plumer L., Steiner U., Oerke E.C. Development of spectral indices for detecting and identifying plant diseases // Remote Sens. Environ. 2013. V. 128. P. 21–30.
6. Zheng Q., Huang W., Cui X., Dong Y., Shi Y., Ma H., Liu L. Identification of wheat yellow rust using optimal three-band spectral indices in different growth stages // J. Sensors. 2018. V. 19. P. 35.
7. Shirzadifar A., Bajwa S., Nowatzki J., Shojaeiarani J. Development of spectral indices for identifying glyphosate-resistant weeds // Comput. Electron. Agric. 2020. V. 170. P. 105276.
8. le Maire G., François C., Dufrêne E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements // Remote Sens. Environ. 2004. V. 89. P. 1–28.
9. Peñuelas J., Gamon J.A., Fredeen A.L., Merino J., Field C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves // Remote Sens. Environ. 1994. V. 48. P. 135–146.
10. Hernández-Clemente R., Navarro-Cerrillo R.M., Zarco-Tejada P.J. Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT+DART simulations // Remote Sens. Environ. 2012. V. 127. P. 298–315.
11. Haboudane D., Tremblay N., Miller J.R., Vigneault P. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data // IEEE Trans. Geosci. Remote Sens. 2008. V. 46. P. 423–437.
12. Shi Y., Huang W., Luo J., Huang L., Zhou X. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis // Comput. Electron. Agric. 2017. V. 141. P. 171–180.
13. S. A. Cherepanov, “Vegetation indices,” Geomatika (2), 98–102 (2011), https://sovzond.ru/upload/iblock/f46/2011_02_017.pdf.
14. A. S. Cherepanov and E. G. Druzhinina, “Spectral characteristics of vegetation and vegetation indexes,” Geomatika (3), 28–32 (2009).
15. V. N. Antonov and L. A. Sladkikh, “Crop monitoring and spring wheat yields forecasting based on remote sensing data,” Geomatika (4), 50–53 (2009)
16. Gitelson A., Mayo M., Yacobi Y.Z., Parparov A., Berman T. The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret // J. Plankton Research. 1994. V. 16. № 8. P. 993–1002.
17. A. N. Babichev, V. A. Monastyrskiy, V. I. Olgarenko, R. V. Skidanov, and V. V. Podlipnov, “Operating system of a wide-cut centre pivot sprinkling machine for precision irrigation,” Puti Povysh. Eff. Oroshaemogo Zemled. 1(73), 195–199 (2019).
18. Adeluyi O., Harris A., Foster T., Clay G.D. Exploiting centimetre resolution of drone-mounted sensors for estimating mid-late season above ground biomass in rice // European J. Agronomy. 2022. V. 132. P. 126411.
19. Qu Y., Wang Z., Shang J., Liu J., Zou J. Estimation of leaf area index using inclined smartphone camera // Comput. Electron. Agric. 2021. V. 191. P. 106514.
20. Lei S., Luo J., Tao X., Qiu Z. Remote sensing detecting of yellow leaf disease of arecanut based on uav multisource sensors // Remote Sensing. 2021. V. 13. № 22. Р. 4562.
21. Soifer V.A., Doskolovich L.L., Golovashkin D.L., Kazanskiy N.L., Kharitonov S.I., Khonina S.N., Kotlyar V.V., Pavelyev V.S., Skidanov R.V., Solovyev V.S., Uspleniev G.V., Volkov A.V. Methods for computer dezign of diffractive optical elements / ed. by Soifer V.A. N.Y.: Willey, 2002.
22. Doskolovich L.L., Skidanov R.V., Bezus E.A., Ganchevskaya S.V., Bykov D.A., Kazanskiy N.L. Design of diffractive lenses operating at several wavelengths // Opt. Exp. 2020. V. 28. P. 11705–11720.
23. Yang C., Shi K., Edwards P., Liu Z. Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device // Opt. Exp. 2010. V. 18. № 23. P. 23529–23534.
24. Blank V., Skidanov R., Doskolovich L., Kazanskiy N. Spectral diffractive lenses for measuring a modified red edge simple ratio index and a water band index // J. Sensors. 2021. V. 21. № 22. P. 7694.
25. V. V. Podlipnov, V. N. Shchedrin, A. N. Babichev, S. M. Vasilyev, and V. A. Blank, “Experimental determination of soil moisture on hyperspectral images,” Komp’yut. Opt. 42(5), 877–884 (2018).