ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-03-05-12

УДК: 771.351.76

Diffractive microstructures of zoom lenses for visible and near-infrared ranges based on novel optical plastics

For Russian citation (Opticheskii Zhurnal):

Грейсух Г.И., Ежов Е.Г., Захаров О.А. Дифракционные микроструктуры вариообъективов видимого и ближнего инфракрасного диапазонов на основе новых оптических пластмасс // Оптический журнал. 2022. Т. 89. № 3. С. 5–12. http://doi.org/10.17586/1023-5086-2022-89-03-05-12

 

Greisukh G.I., Ezhov E.G., Zakharov O.A. Diffractive microstructures of zoom lenses for visible and near-infrared ranges based on novel optical plastics  [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 3. P. 5–12. http://doi.org/10.17586/1023-5086-2022-89-03-05-12

For citation (Journal of Optical Technology):

G. I. Greisukh, E. G. Ezhov, and O. A. Zakharov, "Diffractive microstructures of zoom lenses for visible and near-infrared ranges based on novel optical plastics," Journal of Optical Technology. 89(3), 127-131 (2022). https://doi.org/10.1364/JOT.89.000127

Abstract:

Subject of study. The possibilities of minimizing the negative effect of the secondary diffraction orders of diffractive microstructures included in structurally simple zoom lenses on the formed image are considered. Objective. The study aims at demonstrating the effectiveness of novel optical plastics in the design of diffractive microstructures for the correction of chromatism and the extension of the operating spectral range of the objectives using three-component eight- and four-lens refractive–diffractive zoom lenses for the visible and near-infrared ranges as an example. Method. Combined mathematical modeling within geometrical optics approximation and rigorous diffraction theory is used. Main results. We demonstrate that, even in structurally simple objectives, new optical plastics allow bilayer diffractive microstructures to be assembled ensuring the absence of halo and any other visually observable negative effect of secondary diffraction orders on the quality of the formed image in all the specified ranges of focal length variation both under daylight and scotopic illumination. Practical significance. The reported results demonstrate the effectiveness of diversification of advanced commercially available optical plastics using the diffractive microstructures of zoom lenses as an example. These results are aimed at stimulating further efforts toward the development and mass production of optical plastics.

Keywords:

refractive–diffractive zoom lense, daylight and scotopic illumination, bilayer diffractive microstructures, diffraction efficiency, quality of image

Acknowledgements:

The authors of the article are grateful to the authors of the research [14] for the provided opportunity to use the dispersion formulas of nanocomposite materials worked out by them.

The research was supported by RSF (project No. 20-19-00081).

OCIS codes: 110.0110, 220.0220

References:

1. R. Bittner, “Tolerancing of single point diamond turned diffractive optical elements and optical surfaces,” J. Eur. Opt. Soc.: Rapid Publ. 2, 07028 (2007).
2. Plastic Hybrid Aspheric Lenses, http://www.edmundoptics.com/optics/optical-lenses/aspheric-lenses/plastic-hybrid-aspheric-lenses/3200.
3. T. Nakamura, K. Suzuki, Y. Inokuchi, and S. Nishimura, “Fundamental properties of broadband dual-contact diffractive optical elements,” Opt. Eng. 58(8), 085103 (2019).
4. H. Yang, C. Xue, J. Xiao, and J. Chen, “Glued diffraction optical elements with broadband and a large field of view,” Appl. Opt. 59(23), 10217–10223 (2020).

5. CameraIQ, https://www.cameraiq.ru/faq/.
6. G. I. Greisukh, E. G. Ezhov, Z. A. Sidyakina, and S. A. Stepanov, “Design and analysis of the compact plastic refractive-diffractive zoom lens,” Komp. Opt. 37(2), 210–214 (2013).
7. G. I. Greisukh, E. G. Ezhov, Z. A. Sidyakina, and S. A. Stepanov, “Design of plastic diffractive-refractive compact zoom lenses for visible–near-IR spectrum,” Appl. Opt. 52(23), 5843–5850 (2013).
8. G. I. Greisukh, E. G. Ezhov, S. A. Stepanov, V. A. Danilov, and B. A. Usievich, “Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure,” J. Opt. Technol. 82(5), 308–311 (2015) [Opt. Zh. 82(5), 56–61 (2015)].
9. G. I. Greisukh, V. A. Danilov, S. A. Stepanov, A. I. Antonov, and B. A. Usievich, “Minimization of the total depth of internal saw-tooth reliefs of a two-layer relief-phase diffraction microstructure,” Opt. Spectrosc. 124(1), 98–102 (2018) [Opt. Specktrosk. 124(1), 100–104 (2018)].
10. G. I. Greisukh, Y. G. Yezhov, A. I. Antonov, V. A. Danilov, and B. A. Usievich, “Potential opportunities of sawtooth diffraction microstructure with two layers and single relief,” J. Opt. 22(8), 085604 (2020).
11. G. I. Greisukh, E. G. Ezhov, A. I. Antonov, V. A. Danilov, and B. A. Usievich, “Limiting spectral and angular characteristics of multilayer relief—phase diffraction microstructures,” Quantum Electron. 50(7), 623–628 (2020).
12. G. I. Greisukh, E. G. Ezhov, O. A. Zakharov, V. A. Danilov, and B. A. Usievich, “Limiting spectral and angular characteristics of sawtooth dual-relief two-layer diffraction microstructures,” Quantum Electron. 51(2), 184–188 (2021).
13. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Lincoln Laboratory Technical Report 914 (MIT, Lexington, 1991).
14. B. Zhang, K. Dong, M. Piao, J. Wang, R. Jia, and H. Jiang, “Optimal design of multilayer diffractive optical element in wide angle of incidence,” Opt. Commun. 502, 127340 (2022).
15. Zemax, https://www.zemax.com/products/opticstudio.
16. D. Werdehausen, S. Burger, I. Staude, T. Pertsch, and M. Decker, “Dispersion-engineered nanocomposites enable achromatic diffractive optical elements,” Optica 6(8), 1031–1038 (2019).
17. N. M. Lyndin, Modal and C Methods Grating Design and Analysis Software, http://www.mcgrating.com.
18. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982).
19. Mitsubishi Gas Chemical, http://www.mgc.co.jp/eng/products/kc/iupizeta_ep.html.
20. G. I. Greisukh, E. G. Ezhov, S. V. Kazin, Z. A. Sidyakina, and S. A. Stepanov, “Visual assessment of the influence of adverse diffraction orders on the quality of image formed by the refractive-diffractive optical system,” Komp. Opt. 38(3), 418–424 (2014).