ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-03-68-78

УДК: 535.8

Electrically controlled microstructured liquid-crystal twist elements for phase conversion of light fields

For Russian citation (Opticheskii Zhurnal):

Мельникова Е.А. Электрически контролируемые микроструктурированные жидкокристаллические твист-элементы для фазового преобразования световых полей // Оптический журнал. 2022. Т. 89. № 3. С. 68–78. http://doi.org/10.17586/1023-5086-2022-89-03-68-78

 

Melnikova E.A. Electrically controlled microstructured liquid-crystal twist elements for phase conversion of light fields [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 3. P. 68–78. http://doi.org/10.17586/1023-5086-2022-89-03-68-78

For citation (Journal of Optical Technology):

Elena Aleksandrovna Melnikova, "Electrically controlled microstructured liquid-crystal twist elements for phase conversion of light fields," Journal of Optical Technology. 89(3), 169-175 (2022). https://doi.org/10.1364/JOT.89.000169

Abstract:

Subject of study. Various topologies are proposed for microstructured photoalignment of the directors in nematic liquid crystals; these topologies can be used in electrically controlled liquid-crystal elements to produce light beams with a specific phase singularity. Main results. Electrically controllable, azimuthally oriented liquid-crystal twist elements were developed to support the transformation of Gaussian beams into beams with a specific number of phase singularities in the wavefront. Polarization microscopy, analysis of the intensity distribution across the beam, and coherent superposition of the transformed light with a plane wave determines the operating voltage range supporting excitation of the beams with optical singularities. It is shown that the developed components perform the wavelength-independent topological phase transformation converting the wavefront associated with a circularly polarized Gaussian beam into optical vortices over a large portion of the optical spectrum without the need for precise adjustment of the control voltage. Diffractive optical elements based on microstructured twist-planar orientation of the liquid-crystal director enable the transformation of linearly polarized wavefronts into optical vortices with different topological charges. A diffractive topological component that produces optical vortices with the topological charge 4 was used as a sample for an experimental study to determine the diffraction efficiency of the componentas a function of the control voltage amplitude. The initial diffraction efficiency (at zero voltage) of the developed diffractive component is about 10% and the peak diffraction efficiency at the control voltage amplitude of a few volts is about 30%. There is no diffractive structure when the external voltage is increased up to 20 V. As revealed by analysis of the interference pattern resulting from coherent superposition of a phase singular beam and a plane wave, the excited optical vortices are stable with respect to the control voltage amplitude. It has been found experimentally that singular beams with high topological charges remain stable during the propagation to a distance approaching 3 m. Practical significance. The developed electrically controlled topological liquid-crystal elements can operate over a wide range of optical wavelengths and may be implemented to produce ultrashort-duration optical vortices and a supercontinuum. Besides, they may be used in the form of multi-trap optical tweezers or in technologies for protection of securities and documents.

Keywords:

singular light beams, optical vortices, liquid crystals, twist effect, tunable diffraction

Acknowledgements:

The author is thankful to V.V. Mogilniy and A.A. Muravskyi for the provided photoalignment agents, and to I.I. Rushnov and O.S. Kabanov for help with sample preparation.

 

The research was carried out within the assignment "Research and development of micro- and nanostructured anisotropic optical elements for phase polarization alteration of light fields" of the government program of scientific research of the Republic of Belarus "Photonics and electronics for innovations".

OCIS codes: 260.6042, 160.3710, 230.3720, 220.4830

References:

1. S. Restuccia, D. Giovannini, G. Gibson, and M. Padgett, “Comparing the information capacity of Laguerre–Gaussian and Hermite–Gaussian modal sets in a finite-aperture system,” Opt. Express 24, 27127–27136 (2016).
2. L. Zhu and J. Wang, “Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode,” Opt. Lett. 40, 5463–5466 (2015).
3. Y. Shen, X. Wang, Z. Xie, C. J. Min, X. Fu, and Q. Liu, “Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities,” Light Sci. Appl. 8, 90 (2019).
4. G. Milione, M. P. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Wilner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40, 1980–1983 (2015).
5. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1, 1–57 (2009).
6. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, and others, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
7. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
8. I. B. Djordjevic, “Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation,” Opt. Express 19, 14277–14289 (2011).
9. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, A. E. Willner, S. Dolinar, and M. Tur, “Experimental demonstration of 100-Gbit/s DQPSK data exchange between orbital-angular-momentum modes,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW1I.5.
10. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
11. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
12. W. Cheng, X.-L. Liu, and P. Polynkin, “Simultaneously spatially and temporally focused femtosecond vortex beams for laser micromachining,” J. Opt. Soc. Am. B 35, B16–B19 (2018).
13. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18, 2144–2151 (2010).
14. M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341, 537–540 (2013).
15. L. Fang, M. J. Padgett, and J. Wang, “Sharing a common origin between the rotational and linear Doppler effects,” Laser Photonics Rev. 11, 1700183 (2017).
16. J. Wang and Y. Liang, “Generation and detection of structured light: a review,” Front. Phys. 9, 688284 (2021).
17. A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8, 200–227 (2016).
18. H. Ma, H. Hu, W. Xie, and X. Xu, “Study on the generation of a vortex laser beam by using phase-only liquid crystal spatial light modulator,” Opt. Eng. 52, 091721 (2013).
19. M. Szatkowski, J. Masajada, I. Augustyniak, and K. Nowacka, “Generation of composite vortex beams by independent spatial light modulator pixel addressing,” Opt. Commun. 463, 125341 (2020).
20. A. S. Ostrovsky, C. Rickenstorff-Parrao, and V. Arrizón, “Generation of the ‘perfect’ optical vortex using a liquid-crystal spatial light modulator,” Opt. Lett. 38, 534–536 (2013).
21. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12, 3548–3553 (2004).
22. S. S. R. Oemrawsingh, J. A. W. Van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. Hooft,“Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43, 688–694 (2004).
23. M. Massari, G. Ruffato, M. Gintoli, F. Ricci, and F. Romanato, “Fabrication and characterization of high-quality spiral phase plates for optical applications,” Appl. Opt. 54, 4077–4083 (2015).
24. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17, 11926–11934 (2009).
25. X. Ling, H. Luo, F. Guan, X. Zhou, H. Luo, and L. Zhou, “Vortex generation in the spin-orbit interaction of a light beam propagating inside a uniaxial medium: origin and efficiency,” Opt. Express 28, 27258–27267 (2020).
26. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital optical angular momentum conversion in liquid crystal ‘q-plates’: classical and quantum applications,” Mol. Cryst. Liq. Cryst. 561, 48–56 (2012).
27. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
28. W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6, 25528 (2016).
29. Y. Liu, X. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92, 101114 (2008).
30. M. Rafayelyan and E. Brasselet, “Bragg-Berry mirrors: reflective broadband q-plates,” Opt. Lett. 41, 3972–3975 (2016).
31. J. Kobashi, H. Yoshida, and M. Ozaki, “Broadband optical vortex generation from patterned cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 646, 116–124 (2017).
32. D. Lee, H. Lee, L. Migara, K. Kwak, V. P. Panov, and J.-K. Song, “Widely tunable optical vortex array generator based on grid patterned liquid crystal cell,” Adv. Opt. Mater. 9, 2001604 (2020).
33. S.-J. Ge, W. Ji, G.-X. Cui, B.-Y. Wei, W. Hu, and Y.-Q. Lu, “Fast switchable optical vortex generator based on blue phase liquid crystal fork grating,” Opt. Mater. Express 4, 2535–2541 (2014).
34. S.-J. Ge, P. Chen, L.-L. Ma, Z. Liu, Z.-G. Zheng, D. Shen, W. Hu, and Y.-Q. Lu, “Optical array generator based on blue phase liquid crystal Dammann grating,” Opt. Mater. Express 6, 1087–1092 (2016).
35. A. A. Kazak, E. A. Melnikova, A. L. Tolstik, U. V. Mahilny, and A. I. Stankevich, “Controlled diffraction liquid-crystal structures with a photoalignment polymer,” Tech. Phys. Lett. 34(10), 861–863 (2008) [Pis’ma Zh. Tekh. Fiz. 34(20), 1–7 (2008)].
36. A. A. Kazak, A. L. Tolstik, and E. A. Mel’nikova, “Controlling light fields by means of liquid-crystal diffraction elements,” J. Opt. Technol. 77(7), 461–462 (2010) [Opt. Zh. 77(7), 72–74 (2010)].
37. A. Kazak, A. Tolstik, E. Melnikova, and A. Komar, “Operation with laser radiation by using of liquid crystal elements,” Nonlinear Phenom. Complex Syst. (Minsk, Belarus) 16(3), 302–308 (2013).
38. P. Chen, B.-Y. Wei, W. Ji, S.-J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y.-Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photonics Res. 3, 133–139 (2015).
39. W. Ji, B. Wei, P. Chen, W. Hu, and Y.-Q. Lu, “Optical field control via liquid crystal photoalignment,” Mol. Cryst. Liq. Cryst. 644, 3–11 (2017).
40. M. G. Tomilin and G. E. Nevskaya, Photonics of Liquid Crystals (Izd. Politekhn. Un-ta, St. Petersburg, 2011).
41. V. S. Mikulich, An. A. Murawski, Al. A. Muravsky, and V. E. Agabekov, “Influence of methyl substituents on azodye photoalignment in thin films,” J. Appl. Spectrosc. 83, 115–120 (2016) [Zh. Prikl. Spektrosk. 83(1), 131–137 (2016)].
42. U. Mahilny, A. Trofimova, A. Stankevich, A. Tolstik, A. Murauski, and A. Muravsky, “New photocrosslinking polymeric materials for liquid crystal photoalignment,” Nonlinear Phenom. Complex Syst. (Minsk, Belarus) 16, 79–85 (2013).
43. O. S. Kabanova, I. I. Rushnova, E. A. Mel’nikova, A. L. Tolstik, A. A. Muravski˘ı, A. A. Muravski˘ı, and R. Haintsmann, “2D diffractive optical structure based on textured photoalignment of a polymerizable liquid crystal,” Zh. Beloruss. Gos. Univ. Fiz. (3), 4–11 (2019).
44. E. A. Melnikova, A. L. Tolstik, I. I. Rushnova, O. S. Kabanova, and A. A. Muravsky, “Electrically controlled spatial-polarization switch based on patterned photoalignment of nematic liquid crystals,” Appl. Opt. 55, 6491–6495 (2016).
45. R. We˛głowski, A. Kozanecka-Szmigiel, W. Piecek, J. Konieczkowska, and E. Schab-Balcerzak, “Electro-optically tunable diffraction grating with photoaligned liquid crystals,” Opt. Commun. 400, 144–149 (2017).
46. C. V. Mauguin, “Sur les cristaux liquides de Lehman,” Bull. Soc. Fr. Miner. 34, 71–117 (1911).
47. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
48. T. Ando, N. Matsumoto, Y. Ohtake, Y. Takiguchi, and T. Inoue, “Structure of optical singularities in coaxial superpositions of Laguerre–Gaussian modes,” J. Opt. Soc. Am. A 27, 2602–2612 (2010).