ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-03-79-88

УДК: 535.421, 535.417

Compressing 3D holographic information similar to data transmission via a single sideband

For Russian citation (Opticheskii Zhurnal):

Шойдин С.А., Пазоев А.Л. Сжатие 3D голографической информации аналогично передаче информации на одной боковой полосе // Оптический журнал. 2022. Т. 89. № 3. С. 79–88. http://doi.org/10.17586/1023-5086-2022-89-03-79-88

 

Shoidin S.A., Pazoev A.L. Compressing 3D holographic information similar to data transmission via a single sideband [In Russia] // Opticheskii Zhurnal. 2022. V. 89. № 3. P. 79–88. http://doi.org/ 10.17586/1023-5086-2022-89-03-79-88

For citation (Journal of Optical Technology):

S. A. Shoidin and A. L. Pazoev, "Compressing 3D holographic information similar to data transmission via a single sideband," Journal of Optical Technology. 89(3), 176-182 (2022). https://doi.org/10.1364/JOT.89.000176

Abstract:

Subject of study. The possibility of real-time transmission of holographic information using standard radio channels by its compression through the removal of the carrier frequency and the use of a single sideband is investigated. Main results. We demonstrate that, according to Russian patent 2,707,582, information about a three-dimensional (3D) object can be stored in the form of two two-dimensional frames, one of which is the texture of the object surface, whereas the other is the depth map of its surface. After considering two principal methods for the formation of such a depth map, namely, the time-of-flight method and the method of structured light, we selected the latter owing to several advantages. This method was used to simulate the real-time recording process of a 3D portrait of a live person. Practical significance. We report the results of a numerical experiment demonstrating the possibility of transmission of 3D holographic images using standard communication channels intended for application in television and augmented reality without specialized glasses and other devices worn by the observer. This result is based on the proposed method for the separation of the carrier spatial frequency and frequencies containing the information about the holography object.

Keywords:

holography, digital holography, interference, holographic interference fringes, 3D image, single sideband modulation, 3D television, 3D augmented reality

OCIS codes: 090.1760

References:

1. Yu. N. Denisyuk, “On the representation of optical properties of the object in the wave field of the emission scattered by it,” Dokl. AN SSSR 144(6), 1275–1278 (1962).
2. P. J. van Heerden, “A new optical method of storing and retrieving information,” Appl. Opt. 2(4), 387–392 (1963).
3. B. Hill, “Some aspects of a large capacity holographic memory,” Appl. Opt. 11(1), 182–196 (1972).
4. M. Born and E. Wolf, Principles of Optics (Nauka, Moscow, 1970).
5. I. S. Gibin, T. N. Mantush, Yu. E. Nesterikhin, B. N. Pankov, E. F. Pen, and P. E. Tverdokhleb, “Programmable holographic memory unit with data recording and readout,” Avtometriya (3), 3–11 (1975).
6. S. I. Soskin, S. A. Shoidin, and V. I. Levin, “Holographic memory unit,” USSR patent 701,350 (1979).
7. S. I. Soskin and S. A. Shoidin, “Calculating the optical scheme of a holographic memory unit,” Opt. Spektrosk. 44(3), 566–573 (1978).
8. S. A. Shoidin, “Investigation of the effect of optical system aberrations on information recording density in a holographic memory unit,” Doctoral thesis (GOI im. S. I. Vavilova, Leningrad, 1982).
9. L. V. Vydrin, N. N. V’yukhina, I. S. Gibin, V. N. Zatolokin, S. F. Kibirev, T. N. Mantush, Yu. E. Nesterikhin, B. N. Pankov, E. F. Pen, P. E. Tverdokhleb, Yu. N. Tishchenko, and A. V. Trubetskoi, “Experimental optoelectronic (holographic) storage system,” Avtometriya (2), 60–67 (1980).
10. S. I. Soskin and S. A. Shoidin, “Investigation of a holographic storage unit in the regime of single hologram recording,” OMP (11), 3–8 (1980).
11. E. A. Sander, V. V. Shkunov, and S. A. Shoidin, “Experimental observation of spatial resonance in a speckle field with variable refractive index,” J. Exp. Theor. Phys. 61(1), 68–69 (1985).
12. S. A. Shoidin, “Determination of the data capacity of hologram matrices in a volume medium,” in Proceedings of the IV All-Soviet Conference on Holography (1982), pp. 149–153.
13. S. A. Shoydin, “Holographic memory without reference beam,” Opt. Mem. Neural Networks 25(4), 262–267 (2016).
14. A. Yu. Betin, V. I. Bobrinev, N. M. Verenikina, S. S. Donchenko, N. N. Evtikhiev, E. Yu. Zlokazov, S. B. Odinokov, S. N. Starikov, and R. S. Starikov, “Projection multiplex recording of computer-synthesized one-dimensional Fourier holograms for holographic storage systems: mathematical and experimental modelling,” Quantum Electron. 45(8), 771–775 (2015).
15. S. B. Odinokov, E. Yu. Zlokazov, S. S. Donchenko, and N. M. Verenikina, “Optical memory system based on incoherent recorder and coherent reader of multiplexed computer generated one-dimensional Fourier transform holograms,” Jpn. J. Appl. Phys. 56(9S), 09NA02 (2017).
16. J. R. Pierce, Symbols, Signals and Noise: The Nature and Process of Communication (Hutchinson, London, 1962).
17. V. P. Titar’ and T. V. Bogdanova, “The problems of the creation of a holographic television system,” Radioelektron. Inf. (2), 38–42 (1999).
18. Yu. N. Denisyuk, “Are the known basic principles of holography adequate for creating new types of three-dimensional cinematography and artificial-intelligence?” Zh. Tekh. Fiz. 61(8), 149–161 (1991).
19. S. A. Shoidin, “Method for remote formation of holographic recording,” Russian patent 2,707,582 (2019).
20. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1130 (1962).
21. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Mir, Moscow, 1973), pp. 257–258.
22. I. S. Gonorovskii, Radiotechnical Circuits and Signals (Sovetskoe Radio, Moscow, 1977).
23. S. I. Baskakov, Radiotechnical Circuits and Signals (LENAND, Moscow, 2016).
24. B. I. Rapoport, “Possibility of holographic image transmission using a slow-scan television system,” Tekh. Kino Telev. (9), 42 (1971).
25. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photon. 3(2), 128–160 (2011).
26. V. A. Kotel’nikov, “On the transmission capacity of ‘ether’ and wire in electric communications,” Phys. Usp. 49(7), 736–744 (2006).
27. H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. AIEE 47(2), 617–644 (1928).

28. A. L. Pazoev and S. A. Shoidin, “Transmission of holographic information on a single sideband,” in Proceedings of the National Conference with International Participation “SibOptika-2021” (2021), vol. 8, pp. 109–117.