DOI: 10.17586/1023-5086-2022-89-04-03-11
УДК: 535.016
Effective collinear interaction of radiation with a traveling refractive index grating in electro-optical waveguides in lithium niobate
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Герасименко Н.Д., Герасименко В.С., Петров В.М. Эффективное коллинеарное взаимодействие излучения с бегущей решёткой показателя преломления в электрооптических волноводах в ниобате лития // Оптический журнал. 2022. Т. 89. № 4. С. 3–11. http://doi.org/10.17586/1023-5086-2022-89-04-03-11
Gerasimenko N.D., Gerasimenko V.S., Petrov V.M. Effective collinear interaction of radiation with a traveling refractive index grating in electro-optical waveguides in lithium niobate [in Russian] // Opticheskii Zhurnal. 2022. V.89. № 4. P. 3–11. http://doi.org/10.17586/1023-5086-2022-89-04-03-11
N. D. Gerasimenko, V. S. Gerasimenko, and V. M. Petrov, "Effective collinear interaction of radiation with a traveling refractive index grating in electro-optical waveguides in lithium niobate," Journal of Optical Technology. 89(4), 191-196 (2022). https://doi.org/10.1364/JOT.89.000191
Subject of study. The electrical properties of traveling wave electrodes positioned on a lithium niobate surface are investigated in this study. Method. The investigation methods included the analytical calculation, numerical modeling, and experimental investigation of the amplitude–frequency response and spectra of collinear interaction at the wavelength of 1552 nm. Main results. We demonstrated that traveling wave electrodes with a refractive index close to the refractive index of the optical waveguide should be used when grating periods are shorter than the length of the interaction area. Moreover, in the case of an exact match of the refractive indices, the minimum grating period is mostly limited by frequency-dependent signal attenuation in the electrodes. The effective phase modulation of light at the wavelength of 1552 nm by an electric signal in the band up to 40 GHz was demonstrated. Practical significance. This study determines the parameters of integrated optical circuits, which allow the fabrication of highly effective phase and amplitude light modulators.
travelling gratings of refractive index, phase modulation of light with ultra-high frequency, diffraction optical elements
OCIS codes: 230.4110, 130.4110, 060.5565, 060.4080
References:1. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1976).
2. V. M. Petrov and A. V. Shamrai, Interference and Diffraction for Information Photonics (Lan’, St. Petersburg, 2019).
3. V. M. Petrov, P. M. Agruzov, V. V. Lebedev, I. V. Il’ichev, and A. V. Shamray, “Broadband integrated optical modulators: achievements and prospects,” Phys.-Usp. 67(7), 722 (2021) [Usp. Fiz. Nauk 191(7), 760–780 (2021)].
4. A. V. Gleim, V. V. Chistyakov, O. I. Bannik, V. I. Egorov, N. V. Buldakov, A. B. Vasilev, A. A. Ga˘ıdash, A. V. Kozubov, S. V. Smirnov, S. M. Kynev, S. É. Khoruzhnikov, S. A. Kozlov, and V. N. Vasil’ev, “Sideband quantum communication at 1 Mbit/s on a metropolitan area network,” J. Opt. Technol. 84(6), 362–367 (2017) [Opt. Zh. 84(6), 4–9
(2017)].
5. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
6. K. K. Wong, Properties of Lithium Niobate (INSPEC, London, 2002).
7. V. M. Petrov, A. V. Shamrai, I. V. Il’ichev, P. M. Agruzov, V. V. Lebedev, N. D. Gerasimenko, and V. S. Gerasimenko, “National microwave integrated optical modulators for quantum communications,” Fotonika 14(5), 414–422 (2020).
8. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16(4), 615–619 (1998).
9. W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krahenbuhl, R. W. McElhanon, and A. S. Greenblatt, “Low drive voltage, broad-band LiNbO3 modulators with and without etched ridges,” J. Lightwave Technol. 17(12), 2551–2555 (1999).
10. J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-voltage thin-sheet X-cut LiNbO3 modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett. 17(10), 2077–2079 (2005).
11. K. Noguchi, “Ultra-high-speed LiNbO3 modulators,” Opt. Fiber Commun. Rep. 4, 1–13 (2007).
12. T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An integrated low-voltage broad-band lithium niobate phase modulator,” IEEE Photon. Technol. Lett. 31(11), 889–892 (2019).
13. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lon ˇcar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
14. X. Ye, F. Ni, H. Li, H. Liu, Y. Zheng, and X. Chen, “High-speed programmable lithium niobate thin film spatial light modulator,” Opt. Lett. 46(5), 1037–1040 (2021).
15. D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, and M. Lon ˇcar, “Integrated photonics on thin-film lithium niobate,” Adv. Opt. Photon. 13(2), 242–352 (2021).