Back
DOI: 10.17586/1023-5086-2022-89-04-40-51
УДК: 535.36
Recognition of 3d objects in a monostatic laser location system via intelligent analysis of pulsed reflectance profiles
For Russian citation (Opticheskii Zhurnal):
Лабунец Л.В., Борзов А.Б., Ахметов И.М. Распознавание 3D объектов в однопозиционной системе лазерной локации методами интеллектуального анализа импульсных отражательных характеристик // Оптический журнал. 2022. Т. 89. № 4. С. 40–51. http://doi.org/ 10.17586/1023-5086-2022-89-04-40-51
Labunets L.V., Borzov AB, Akhmetov I.M.Recognition of 3d objects in a monostatic laser location system via intelligent analysis of pulsed reflectance profiles [in Russian] // Opticheskii Zhurnal. 2022. V.89. № 4. P. 40-51. http://doi.org/10.17586/1023-5086-2022-89-04-40-51
For citation (Journal of Optical Technology):
L. V. Labunets, A. B. Borzov, and I. M. Akhmetov, "Recognition of 3D objects in a monostatic laser location system via intelligent analysis of pulsed reflectance profiles," Journal of Optical Technology. 89(4), 217-224 (2022). https://doi.org/10.1364/JOT.89.000217
Abstract:
Subject of study. A physics-based expert model of initial features for the recognition of anthropogenic 3D objects in a monostatic laser location system is proposed. Method. The model is based on an intelligent analysis of data obtained using digital simulation modeling of temporal profiles of pulsed reflectance profiles of the object. Informative features are formed using the method of principal components. Main results. A cluster structure in the space of principal features is demonstrated and investigated. The parameters of several algorithms for the clustering and classification of 3D objects are identified using machine learning methods and their quality is tested in an informative space. Practical significance. The stages of solving the clustering and classification tasks for anthropogenic objects by a monostatic laser location system are described in chronological order.
Keywords:
simulation digital modeling, impulse effective scattering area of 3D object, informative features, clustering and classification algorithms, machine learning methods
OCIS codes:
070.5010
References:
1. L. V. Labunets, Digital Models of Target Images and Signal Representations in Optical Location Systems (Izdatel’stvo MGTU im. N. E. Baumana, Moscow, 2007).
2. L. V. Labunets, Real-Time Digital Modeling of Optical Reflectance Profiles of Targets (Izdatel’stvo MGTU im. N. E. Baumana, Moscow, 2013).
3. L. V. Labunets, A. B. Borzov, and I. M. Akhmetov, “Real-time models of pulsed reflectance profiles of 3D objects in a monostatic laser loca-tion system,” J. Opt. Technol. 87(9), 513–520 (2020) [Opt. Zh. 87(9), 12–23 (2020)].
4. N. G. Zagoruiko, Applied Methods for Analysis of Data and Knowledge (IM SO RAN, Novosibirsk, 1999).
5. S. N. Kulichkov, A. I. Chulichkov, and D. S. Demin, Morphological Analysis of Infrasound Signals in Acoustics (Novyi Akropol’, Moscow, 2010).
6. A. I. Chulichkov, N. D. Tsybulskaya, and S. N. Kulichkov, “The pos-sibility of the classification of infrasonic signals using methods for checking statistical hypotheses,” Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 67(2), 166–168 (2012).
7. L. V. Labunets, “Digital processing of transient responses of 3D objects in a monostatic optical radar system,” J. Commun. Technol. Electron. 47(4), 405–412 (2002) [Radiotekh. Elektron. 47(4), 452–460 (2002)].
8. L. V. Labunets, A. B. Borzov, and I. M. Akhmetov, “Regularized para-metric model of the angular distribution of the brightness factor of a rough surface,” J. Opt. Technol. 86(10), 618–626 (2019) [Opt. Zh. 86(10), 20–29 (2019)].
9. A. M. Belyakov, E. P. Palagin, and F. R. Khantseverov, Soviet Military Encyclopedia, Vol. 4: Multipurpose Spacecraft (Voenizdat, Moscow, 1976), pp. 386–387.
10. A. Andronov and R. Shevrov, American Space Systems for Imagery Intelligence (Krasnaya Zvezda, Moscow, 1995), pp. 39–43.
11. G. Batista, E. J. Keogh, O. M. Tataw, and V. M. A. de Souza, “CID: an efficient complexity-invariant distance for time series,” Data Min. Knowl. Discovery 28(3), 634–669 (2014).
12. A. Buja, D. Cook, D. Asimov, and C. B. Hurley, Theory and Computational Methods for Dynamic Projections in High-Dimensional Data Visualizations (1996).
13. S. A. Aivazyan, I. S. Enyukov, and L. D. Meshalkin, Applied Statistics: Investigation of Dependences (Finansy i Statistika, Moscow, 1985).
14. A. M. Shurygin, Applied Stochastics: Robustness, Evaluation, Prognosis (Finansy i Statistika, Moscow, 2000).
15. D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley, New York, 1992).
16. S. A. Aivazyan, I. S. Enyukov, and L. D. Meshalkin, Applied Statistics: Classification and Dimension Reduction (Finansy i Statistika, Moscow, 1989).
17. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (1996), pp. 226–231.
18. S. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, New York, 1999)