Back
DOI: 10.17586/1023-5086-2022-89-04-59-69
УДК: 53.082.5 62
Characteristics of various sensor devices for a miniature resonant optical gyroscope
For Russian citation (Opticheskii Zhurnal):
Гилев Д.Г., Журавлёв А.А., Москалёв Д.Н., Чувызгалов А.А., Криштоп В.В. Характеристики различных чувствительных элементов миниатюрного резонансного оптического гироскопа // Оптический журнал. 2022. Т. 89. № 4. С. 59–69. http://doi.org/10.17586/1023-5086-2022-89-04-59-69
Gilev D.G., Zhuravlev A.A., Moskalev D.N., Chuvyzgalov A.A., Krishtop V.V.Characteristics of various sensor devices for a miniature resonant optical gyroscope [in Russian] // Opticheskii Zhurnal. 2022. T. 89. № 4. S. 59-69. http://doi.org/ 10.17586/1023-5086-2022-89-04-59-69
For citation (Journal of Optical Technology):
D. G. Gilev, A. A. Zhuravlev, D. N. Moskalev, A. A. Chuvyzgalov, and V. V. Krishtop, "Characteristics of various sensor devices for a miniature resonant optical gyroscope," Journal of Optical Technology. 89(4), 229-235 (2022). https://doi.org/10.1364/JOT.89.000229
Abstract:
Subject of study. Using a ring resonator as an example, this paper describes the general operating principle for optical resonators, the characteristics of such resonators, and the relationship between resonator quality factor Q and gyroscope sensitivity. Several sensor devices (optical resonators) were compared for use in the development of a miniature resonant optical gyroscope. These optical resonators were of three different types: a fiber-optic resonator, a whispering gallery mode resonator, and an integrated optical resonator ring. Methodology. The fiber-optic resonator consists of two fiber-optic splitters spliced together, the whispering gallery mode resonator consists of a three-dimensional dielectric structure in which whispering gallery modes are excited, and the integrated optical resonator ring consists of an optical waveguide and closed loop mounted on a common substrate. The characteristics of the high-Q(Q=106−109) whispering gallery mode resonators and fiber-optic resonators were measured using a narrow-band scanning laser and an oscillograph. A simpler approach, with a broadband laser source and an optical spectrum analyzer, was used for the low-Q(Q<106) integrated optical resonators. Main results. Values of Q=5.2×108, Q=4.3×106, and Q=1.1×104 were obtained for a MgF2 disk resonator, fiber-optic disk resonator, and integrated optical resonator, respectively. Practical significance. The whispering gallery mode resonator turns out to be the most promising of these sensor devices since it has the highest Q and the highest accuracy for angular velocity measurements. Fiber optic resonators are competitive but are more sensitive to temperature and external mechanical effects. Integrated optical resonators have the advantage of miniaturization and the ability to include temperature stabilization components and components that provide resistance to mechanical effects.
Keywords:
gyroscope, whispering gallery modes, optical resonator, gyroscope sensitive element, fibre-optic resonator, gyroscope sensitivity
Acknowledgements:
This work was carried out within the framework of the State Support Program for leading companies developing and implementing products, services and platform solutions mainly based on technologies and solutions for the digital transformation of priority sectors of the economy and social sphere (Agreement No. 2/549/2020 of 23.07.2020).
OCIS codes:
230.0230, 120.5790, 060.2800
References:
1. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
2. X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot nterferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
3. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
4. A. Nasir, Y. Mikami, R. Yatabe, H. Yoshioka, N. Vasa, and Y. Oki, “Fully room temperature and label free biosensing based on an ink-jet printed polymer microdisk laser,” Opt. Mater. Express 11(3), 592–602 (2021).
5. Y. Hashimoto, A. Goban, Y. Hirabayashi, Y. Kobayashi, T. Araki, and T. Aoki, “On-chip photon-pair generation in a silica microtoroidal cavity,” Opt. Express 29(3), 3533–3542 (2021).
6. R. R. Guba˘ıdullin, “Radiophotonic system for monitoring fuelcell temperatures in vehicles using addressable fiber-optic Bragg structures with two π phase shifts,” Prikl. Fotonika 6(3–4), 193–202 (2019).
7. K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring esonator: overall system optimization and phase noise reduction,” in 2012 IEEE International Frequency Control Symposium Proceedings, Baltimore, Maryland, 21–24 May 2012.
8. N. M. Barbour, “Inertial navigation sensors,” in Proceedings of the NATO RTO Symposium on Low Cost Navigation Sensors (Charles Stark Draper Lab Inc., Cambridge, Massachusetts, 2010).
9. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, London, 2014).
10. D. A. Matryekhin and A. N. Tynynyka, “A simple design for a fiberoptic angular velocity sensor,” Izv. Vyssh. Uchebn. Zav. Priborostr. 62(2), 117–122 (2019).
11. A. V. Rusapov, “A study of a technique for introducing a local thermal effect with applications for compensating the drift of a fiber-optic gyroscope,” Abstract of candidate’s dissertation (ITMO University, St. Petersburg, Russia, 2014).
12. G. E. Stedman, “Ring-laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60(6), 615–688 (1997).
13. M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, Heidelberg, 2010).
14. M. N. Korolev, “A study of the technical characteristics of modern angular-velocity sensors,” in Abstracts of Papers from the 12th International Scientific and Engineering Conference Instrumentation
2019, Minsk, 2019, pp. 21–23.
15. A. V. Bonshtedt, S. V. Kuz’min, and P. K. Machekhin, “Eight-point model of a solid-state wave gyroscope,” Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki (1), 135–214 (2007).
16. R. J. P. Menéndez, “Fiber-optic ring resonator interferometer,” in Interferometry (IntechOpen, London, 2019), pp. 49–70.
17. D. G. Rabus, Integrated Ring Resonators (Springer, Berlin, 2007).
18. G. T. Paloczi, Y. Huang, and A. Yariv, “Free-standing all-polymer microring resonator optical filter,” Electron. Lett. 39(23), 1650–1651 (2003).
19. A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013).
20. K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22(26), 32158–32173 (2014).
21. T. M. Fortier, Y. Le Coq, J. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, “Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb,” Phys. Rev. Lett. 97(16), 163905 (2006).
22. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
23. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
24. A. Francois and M. Himmelhaus, “Optical biosensor based on whis-pering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92(14), 141107 (2008).
25. E. A. Vyuzhanina, D. G. Gilev, V. K. Struk, and V. V. Krishtop, “Biconical optical fiber fabrication,” in International Conference Laser Optics (ICLO) (2020).
26. A. A. Chuvyzgalov, D. G. Gilev, E. A. Vyuzhanina, and V. Krishtop, “Fabrication of D fiber for feeding light into an optical resonator,” in Collected Papers from the XII International Conference on Fundamental Problems in Optics, S. A. Kozlov, ed. (Universitet ITMO, St. Petersburg, 2020), pp. 341–343.
27. A. V. Verbitskii, D. A. Dvoretskiy, S. G. Sazonkin, I. O. Orekhov, Y. G. Ososkov, A. B. Pnev, L. K. Denisov, and V. E. Karasik, “Simulation of ultrashort pulse generation in an all-fiber erbium-doped ring laser with a highly nonlinear cavity,” J. Opt. Technol. 87(3), 175–181 (2020) [Opt. Zh. 87(3), 56–65 (2020)].
28. Q. Ma, L. Li, F. Wei, J. Sun, F. Yu, J. Huang, X. Gu, and Y. Ma, “High sensitivity sensors based on open cavity in-fiber Fabry–Perot and Mach–Zehnder interferometers,” J. Opt. Technol. 88(1), 37–41 (2021) [Opt. Zh. 88(1), 37–41 (2021)].
29. “KTH has created world’s smallest optical disk resonator,” https://www.aphys.kth.se/photonics/op/arkiv/kth-har-byggt- varldens-minsta-skivresonator-1.364316.
30. “Ability to miniaturize photonics devices to sizes compatible with computer chips inches closer,” https://phys.org/news/2013-01-ability-miniaturize-photonics-devices-sizes.html.
31. A. Kovach, D. Chen, J. He, H. Choi, A. H. Dogan, M. Ghasemkhani, H. Taheri, and A. M. Armani, “Emerging material systems for integrated optical Kerr frequency combs,” Adv. Opt. Photon. 12(1), 135–222 (2020).
32. X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 166–185 (2007).
33. Z. X. Liang, C. P. Xu, A. J. Zhu, C. Hu, S. H. Du, and C. X. Zhao, “Directional coupling surface plasmon polariton electro-optic modulator for optical ring networks-on-chip,” J. Opt. Technol. 87(9), 542–553 (2020) [Opt. Zh. 87(9), 54–69 (2020)].
34. W. Liang, V. S. Ilchenko, A. A. Savchenkov, E. Dale, D. Eliyahu, A. B. Matsko, and L. Maleki, “Resonant microphotonic gyroscope,” Optica 4(1), 114–117 (2017).
35. H. Ma, J. Zhang, L. Wang, Y. Lu, D. Ying, and Z. Jin, “Resonant microoptic gyro using a short and high-finesse fiber ring resonator,” Opt. Lett. 40(24), 5862–5865 (2015).
36. L. Feng, Y. Zhi, M. Lei, and J. Wang, “Suppression of frequency locking noise in resonator fiber optic gyro by differential detection method,” Opt. Laser Technol. 62, 109–114 (2014).
37. Y. Zhi, L. Feng, J. Wang, and Y. Tang, “Compensation of scale factor nonlinearity in resonator fiber optic gyro,” Opt. Eng. 53(12), 127108 (2014).
38. L. Feng, J. Wang, Y. Zhi, Y. Tang, Q. Wang, H. Li, and W. Wang, “Transmissive resonator optic gyro based on silica waveguide ring resonator,” Opt. Express 22(22), 27565–27575 (2014).
39. L. Feng, M. Lei, H. Liu, Y. Zhi, and J. Wang, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Opt. 52(8), 1668–1675 (2013).
40. M. Lei, L. Feng, Y. Zhi, and H. Liu, “Test for scale factor of resonant micro-optical gyro based on equivalent input,” Optik 124(19), 3913–3916 (2013).
41. H. Li, L. Liu, Z. Lin, Q. Wang, X. Wang, and L. Feng, “Double closed-loop control of integrated optical resonance gyroscope with mean-square exponential stability,” Opt. Express 26(2), 1145–1160 (2018).
42. V. Yu. Venediktov, Yu. V. Filatov, and E. V. Shalymov, “Passive ring resonator micro-optical gyroscopes,” Quantum Electron. 46(5), 437–446 (2016) [Kvant. Elektron. 46(5), 437–446 (2016)].
43. K. N. Min’kov, G. V. Likhachev, N. G. Pavlov, A. N. Danilin, A. E. Shitikov, A. I. Yurin, E. A. Lonshakov, F. V. Bulygin, V. E. Lobanov, and I. A. Bilenko, “Fabrication of high-Q crystalline whispering gallery mode microcavities using single-point diamond turning,” J. Opt. Technol. 88(6), 348–353 (2021) [Opt. Zh. 88(6), 84–92 (2021)].
44. E. A. Vyuzhanina and V. V. Kryshtop, “Disk resonators for angular velocity sensors,” Izv. Vyssh. Uchebn. Zav. Priborostr. 63(9), 823–829 (2020).