ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-05-11-20

УДК: 621.373.826

Pulsed lasing in a broad wavelength range in Cr:LiSrAlF6 crystal

For Russian citation (Opticheskii Zhurnal):

Попов Е.Э., Сергеев А.А., Погода А.П., Петров В.М., Борейшо А.С. Импульсная генерация излучения в широком диапазоне длин волн на кристалле LiSrAlF6:Cr // Оптический журнал. 2022. Т. 89. № 5. С. 11–20. http://doi.org/ 10.17586/1023-5086-2022-89-05-11-20

 

Popov E.E., Sergeev A.A., Pogoda A.P., Petrov V.M., Boreisho A.S. Pulsed lasing in a broad wavelength range in Cr:LiSrAlF6 crystal [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 5. P. 11–20. http://doi.org/ 10.17586/1023-5086-2022-89-05-11-20

For citation (Journal of Optical Technology):

E. E. Popov, A. A. Sergeev, A. P. Pogoda, V. M. Petrov, and A. S. Boreisho, "Pulsed lasing in a broad wavelength range in Cr:LiSrAlF6 crystal," Journal of Optical Technology. 89(5), 255-261 (2022). https://doi.org/10.1364/JOT.89.000255

Abstract:

Subject of study. The lasing spectra of a pulsed laser based on a Cr:LiSrAlF6 active medium are studied. Method. An intracavity transmission volume Bragg grating was used as the lasing mode on two aliquant wavelengths and wavelength tuning. The grating was recorded in a photo-thermo-refractive glass. Main results. For the first time in Russia, simultaneous narrowband lasing was demonstrated at two aliquant wavelengths in the band of 795–895 nm in a Cr:LiSrAlF6 crystal. The use of a volume transmission Bragg grating for continuous tuning of the central wavelength of the generated laser emission was demonstrated using additional feedback through a mirror with a high reflection coefficient positioned in the first diffraction order. Practical significance. Pulsed lasers with tunable wavelengths are applied in various scientific and practical applications including ecological monitoring of atmosphere conditions. The lasing at two aliquant wavelengths investigated in this study enables the design of high-power pulsed sources of terahertz radiation in the range of 15.5–27.1 THz.

Keywords:

LiSrAlF6:Cr-laser, terahertz radiation, Bragg grating, wavelength tuning, passive Q-switching mode

Acknowledgements:

The research was carried out in the Federal State Budget Educational Institution for Higher Education D. F. Ustinov Baltic State Technical University “Voenmekh” with financial support from the Ministry of Science and Higher Education of the Russian Federation (supplementary agreement of 9 June 2020 No. 075-03-2020-045/2 for the execution of the base part of the state assignment “Development of the fundamental principles of the assembly and control of the groups of high-speed unmanned space- or air-based craft and groups of ground-based robotic complexes”).

OCIS codes: 140.0140

References:

1. Fischer M.C., Wilson J.W., Robles F.E., and Warren S. Invited review article: Pump-probe microscopy // Rev. Scientific Instruments. 2016. V. 87. № 3 P. 031101.
2. Lefort C. A review of biomedical multiphoton microscopy and its laser sources // J. Phys. D: Appl. Phys. 2017. V. 50. № 42. P. 423001.
3. Stephens D.J., Allan V.J. Light microscopy techniques for live cell imaging // Science. 2003. V. 300. № 5616. P. 82–86.
4. Pachitariu M., Stringer C., Schröder S., Dipoppa M., Rossi L.F., Carandini M., Harris K.D. Beyond 10,000 neurons with standard two-photon microscopy // BioRxiv. 2017. DOI: https://doi.org/10.1101/061507
5. Zong W., Runlong W., Li M., Hu Y. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice // Nature Methods. 2017. V. 14. № 7. P. 713–719.
6. Pichon P., Taleb H., Druon F., et al. Tunable UV source based on an LED-pumped cavity-dumped Cr:LiSAF laser // Opt. Exp. 2019. V. 27. № 16. P. 23446–23453.

7. Van Nguyen D., Cadatal-Raduban M., Van Pham D., et al. Tunable dual wavelength and narrow linewidth laser using a single solid-state gain medium in a double Littman resonator // Opt. Commun. 2021. V. 496. P. 127131.
8. Li J., Yu Z., Du Z., et al. Standoff chemical detection using laser absorption spectroscopy: A review // Remote Sensing. 2020. V. 12. № 17. P. 2771.
9. Tunable laser applications / ed. by Duarte F.J. Boca Raton: CRC press, 2008. 480 p.
10. Beaud P., Chen Y.E., Chai B.H., et al. Gain properties of LiSrAlF6:Cr3+ // Opt. Lett. 1992. V. 17. № 15. P. 1064–1066.
11. Payne S.A., Smith L.K., Beach R.J., et al. Properties of Cr:LiSrAlF6 crystals for laser operation // Appl. Opt. 1994. V. 33. № 24. P. 5526–5536.
12. Payne S.A., Chase L.L., Smith L.K., et al. Laser performance of LiSrAlF6:Cr3+ // J. Appl. Phys. 1989. V. 66. № 3. P. 1051–1056.
13. Scheps R., Myers J.F., Serreze H.B., et al. Diode-pumped Cr:LiSrAlF6 laser // Opt. Lett. 1991. V. 16. № 11. P. 820–822.
14. Demirbas U., Schmalz M., Sumpf B., et al. Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers // Opt. Exp. 2011. V. 19. № 21. P. 20444–20461.
15. Balembois F., Georges P., Salin F., et al. Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser // J. Appl. Phys. letters. 1992. V. 61. № 20. P. 2381–2382.
16. Ditmire T., Perry M.D. Terawatt Cr:LiSrAlF6 laser system // Opt. Lett. 1993. V. 18. № 6. P. 426–428.
17. White W.E., Hunter J.R., Van Woerkom L., et al. 120-fs terawatt Ti:Al2O3/Cr:LiSrAlF6 laser system // Opt. Lett. 1992. V. 17. № 15. P. 1067–1069.
18. Rizvi N.H., French P.M.W., Taylor J.R. 50-fs pulse generation from a self-starting cw passively modelocked Cr:LiSrAlF6 laser // Opt. Lett. 1992. V. 17. № 12. P. 877–879.
19. Rizvi N.H., French P.M.W., Taylor J.R. Generation of 33-fs pulses from a passively mode-locked Cr3+:LiSrAlF6 laser // Opt. Lett. 1992. V. 17. № 22. P. 1605–1607.
20. Miller A., LiKamWa P., Chai B.H.T., et al. Generation of 150-fs tunable pulses in Cr:LiSrAlF6 // Opt. Lett. 1992. V. 17. № 3. P. 195–197.
21. Evans J.M., Spence D.E., Sibbett W., et al. 50-fs pulse generation from a self-mode-locked Cr:LiSrAlF6 laser // Opt. Lett. 1992. V. 17. № 20. P. 1447–1449.
22. Demirbas U., Wang, J., Petrich G.S., et al. 100-nm tunable femtosecond Cr:LiSAF laser mode locked with a broadband saturable Bragg reflector // J. Appl. Opt. 2017. V. 56. № 13. P. 3812–3816.
23. Taleb H., Pichon P., Druon F., et al. LED-pumped femtosecond Cr:LiSAF regenerative amplifier system // Opt. Lett. 2021. V. 46. № 10. P. 2421–2424.
24. Canbaz F., Kakenov N., Kocabas C., et al. Graphene mode-locked Cr:LiSAF laser at 850 nm // Opt. Lett. 2015. V. 40. № 17. P. 4110–4113.
25. Demirbas U., Acar D.A.E. Continuous-wave, quasi-continuous-wave, gain-switched, and femtosecond burstmode operation of multi-mode diode-pumped Cr:LiSAF lasers // JOSA B. 2016. V. 33. № 10. P. 2105–2113.
26. Demirbas U., Baali I., Acar D.A.E., et al. Diode-pumped continuous-wave and femtosecond Cr:LiCAF lasers with high average power in the near infrared, visible and near ultraviolet // Opt. Exp. 2015. V. 23. № 7. P. 8901–8909.
27. Mekteplioglu M.F., Ozturk Y., Kärtner F.X., et al. Tunable Q-switched mode-locked Cr:LiSAF laser // Opt. Commun. 2021. V. 488. P. 126836.
28. Tanısalı G., Baylam I., Tascı M., et al. 21 fs Cr:LiSAF laser mode locked with a single-walled carbon nanotube saturable absorber // Opt. Lett. 2019. V. 44. № 19. P. 4662–4665.
29. Chung T.Y., Rapaport A., Smirnov V., et al. Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror // Opt. Lett. 2006. V. 31. № 2. P. 229–231.
30. Efimov O.M., Glebov L.B., Glebova L.N., and Smirnov V.I. Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass // US patent № 6586141 B1. 2003.
31. Kunpeng L., Yanlong S., Li Y., et al. High-efficiency tunable dual-wavelength Cr:LiSAF laser with external grating feedback // Opt. Commun. 2017. V. 405. P. 233–237.
32. Maestre H., Torregrosa A.J., Capmany J. Tunable blue-violet Cr3+:LiCAF+BiBO compact laser // Laser Physics. 2015. V. 25. № 3. P. 035401.

33. N. V. Nikonorov and V. M. Petrov, “Holographic optical components based on photorefractive crystals and glasses: comparative analysis and development prospects,” Opt. Spectrosc. 129(5), 530–537 (2021).

34. Ivanov S.A., Ignat’ev A.I., Nikonorov N.V., et al. Holographic characteristics of a modified photothermorefractive glass // JOT. 2014. V. 81. № 6. P. 356–360.
35. Jin C., Li D., Bai Y., et al. Wideband tunable graphene-based passively Q-switched Tm:YAP laser // Laser Phys. 2015. V. 25. № 4. P. 045802.
36. Yeh C.H., Chen H.Z., Chen J.Y., et al. Use of fiber Bragg grating (FBG) for stable and tunable erbium-doped fiber ring laser with single-longitudinal-mode (SLM) output // Laser Phys. 2015. V. 25. № 11. P. 115101.
37. Mekteplioglu M.F., Ozturk Y., Kärtner F.X., et al. Tunable Q-switched mode-locked Cr:LiSAF laser // Opt. Commun. 2021. V. 488. P. 126836.
38. Bruce E. Tunable lasers // IEEE Spectrum. 2002. V. 39. № 2. P. 35–39.
39. Eggleston J.M., Deshazer L.G., Kangas K.W. Characteristics and kinetics of laser-pumped Ti:sapphire oscillators // IEEE J. Quantum Electronics. 1988. V. 24. № 6. P. 1009–1015.
40. Payne S.A., Krupke W.F., Smith L.K., et al. 752 nm wing-pumped Cr:LiSrAlF6 laser // IEEE J. Quantum Electronics. 1992. V. 28. № 4. P. 1186–1196
41. Demirbas U., Baali I. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770–1110 nm tuning range and frequency doubling to 387–463 nm // Opt. Lett. 2015. V. 40. № 20. P. 4615–4618.
42. Zhang Q., Dixon G.J., Chai B.H.T., et al. Electronically tuned diode-laser-pumped Cr:LiSrAlF6 laser // Opt. Lett. 1992. V. 17. № 1. P. 43–45.