DOI: 10.17586/1023-5086-2022-89-05-21-30
УДК: 535.4, 543.4, 681.7
Study on plane grating spectral imaging system with smile and keystone eliminated
Full text on elibrary.ru
Publication in Journal of Optical Technology
Zhang X.L., Li X.J., Tang X.Y. Исследование спектральной изображающей системы на основе плоской дифракционной решетки с устраненными кривизной и трапецивидностью формируемых спектральных линий. Study on plane grating spectral imaging system with smile and keystone eliminated [на англ. яз.] // Оптический журнал. 2022. Т. 89. № 5. С. 21–30. http://doi.org/10.17586/1023-5086-2022-89-05-21-30
Zhang X.L., Li X.J., Tang X.Y. Исследование спектральной изображающей системы на основе плоской дифракционной решетки с устраненными кривизной и трапецивидностью формируемых спектральных линий. Study on plane grating spectral imaging system with smile and keystone eliminated [in English] // Opticheskii Zhurnal. 2022. V. 89. № 5. P. 21–30. http://doi.org/10.17586/1023-5086-2022-89-05-21-30
Xiaolong Zhang, Xiujuan Li, and Xiaoyan Tang, "Study on a plane grating spectral imaging system with smile and keystone eliminated," Journal of Optical Technology. 89(5), 262-268 (2022). https://doi.org/10.1364/JOT.89.000262
Subject of Study. For grating-based imaging spectrometer, the method using off-axis lens to correct the smile and keystone is proposed and verified by simulation. Method. In the set coordinate system, the ratios of direction cosines of the refractive rays along the y-axis and z-axis are studied using the spatial ray tracing method. And on this basis, the smile characteristics of single refraction sphere and off-axis lens have been analyzed. In order to verify the theory, the visible spectral imaging system without off-axis lens and that with off-axis lens have been optimized respectively. Main Results. The criterion of smile sign has been given and discussed. For the spectral imaging system without off-axis lens, good image quality and high spectral resolution have been achieved, which is less than 1nm. The modulation transfer functions at the wavelengths of 400, 600 and 800 nm are greater than 0.5 at the Nyquist frequency. However, the maximums of the smile and keystone are greater than 0.07 and 0.06 mm respectively, which are several times than the unit size. For the spectral imaging system with off-axis lens, the image quality is basically the same as the previous one. The obvious differences between the two systems are the smile and keystone. For the latter, the maximums of smile and keystone at all working wavelengths in all fields are close to 6.24 and 6.40 μm, which
are less than half of the unit size. Practical significance. The smile and keystone caused by plane grating can be corrected by off-axis lens in plane grating-based imaging spectrometer, which provides a universal method for the design of spectral imaging system.
spectral imaging system, smile, keystone, off-axis lens, plane grating
Acknowledgements:This research was supported by the Science Foundation of Henan Department of Education (Grant No. 22A416009), the Key Scientific and Technological Project of Henan Province (Grant No. 212102210115), the Doctoral Scientific Research Foundation of Nanyang Institute of Technology (Grant No. 510119), and the Interdisciplinary Sciences Project, Nanyang Institute of Technology.
OCIS codes: 220.2740, 110.4234, 050.1950
References:1. Zhao S.H., Wang Q., Li Y., Liu S.H., Wang Z.T., Zhu L., WangZ.F. An overview of satellite remote sensing technology used in China’s environmental protection // Earth Sci. Inform. 2017. V. 10. № 2. P. 137–148.
2. KozoderovV.V., Dmitriev E.V., Sokolov A.A. Improved technique for retrieval of forest parameters from hyperspectral remote sensing data // Opt. Exp. 2015. V. 23. № 24. P. A1342–A1353.
3. Hong J., Kim Y., Choi B., Hwang S., Jeong D., Lee J.H., Kim H. Efficient method to measure the spectral distortions using periodically distributed slit in hyperspectral imager // Opt. Exp. 2017. V. 25. № 17. P. 20340–20351.
4. Skauli T. An upper-bound metric for characterizing spectral and spatial coregistration errors in spectral imaging // Opt. Exp. 2012. V. 20. № 2. P. 918–933.
5. Zhang X.L., Yu K., Zhang J. Study on imaging spectrometer with smile and keystone eliminated // Opt. Commun. 2017. V. 387. P. 245–251.
6. Zavarzin V.I., Mitrofanova Yu.S. System solutions for prospective hyperspectral equipment // JOT. 2017. V. 84. № 4. P. 226–230.
7. Warren D.W., Gutierrez D.J., Hall J.L., Keim E.R. Dyson spectrometers for infrared earth remote sensing // Proc. SPIE. 2008. V. 7082. P. 70820R–70820R–8.
8. Montero-Orille C., Prieto X., González-Núñez H., Fuente R.D.L. Two-wavelength anastigmatic Dyson imaging spectrometers // Opt. Lett. 2010. V. 35. № 14. P. 2379–2381.
9. Xu D., Owen J.D., Papa J.C., Reimers J., Suleski T.J., Troutman J.R., Davies M.A., Thompson K.P., Rolland J.P. Design, fabrication, and testing of convex reflective diffraction gratings // Opt. Exp. 2017. V. 25. № 13. P. 15252–15268.
10. Kim S.H., Kong H.J., Chang S. Aberration analysis of a concentric imaging spectrometer with a convex grating // Opt. Commun. 2014. V. 333. P. 6–10.
11. Zou C.B., Yang J.F., Wu D.S., Zhao Q., Gan Y.Q., Fu D., Yang F.C., Liu H., Bai Q.L., Hu B.L. Design and test of portable hyperspectral imaging spectrometer // J. Sensors. 2017. V. 2017. P. 1–9.
12. Yuan L.Y., Xie J.N., He Z.P., Wang Y.M., Wang J.Y. Optical design and evaluation of airborne prismgrating imaging spectrometer // Opt. Exp. 2019. V. 27. № 13. P. 17686–17700.