ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-05-03-10

УДК: 535.421

Spatial modulation spectroscopy of semiconductors using dynamic gratings

For Russian citation (Opticheskii Zhurnal):

Толстик А.Л., Даденков И.Г., Станкевич А.А. Диагностика функциональных материалов методом динамических решеток // Оптический журнал. 2022. Т. 89. № 5. С. 3–10. http://doi.org/ 10.17586/1023-5086-2022-89-05-03-10

 

Tolstik A.L., Dadenkov I.G., Stankevich A.A. Spatial modulation spectroscopy of semiconductors using dynamic gratings [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 5. P. 3–10. http://doi.org/ 10.17586/1023-5086-2022-89-05-03-10

For citation (Journal of Optical Technology):

A. L. Tolstik, I. G. Dadenkov, and A. A. Stankevich, "Spatial modulation spectroscopy of semiconductors using dynamic gratings," Journal of Optical Technology. 89(5), 250-254 (2022). https://doi.org/10.1364/JOT.89.000250

Abstract:

Subject of study. Several characterization methods that utilize recording and reading out of dynamic gratings to analyze functional materials are proposed. Method. The methods are based on pulsed recording of thin and volume dynamic gratings followed by reconstruction using continuous laser emission to facilitate the detection of the formation and relaxation dynamics of the recorded diffraction grating. Nonlinear optical, thermo-optic, and kinetic properties of condensed media were obtained based on the measured kinetics of the diffracted signals. Main results. The performance characteristics of a dynamic grating method were analyzed for characterization and parameter measurements of functional materials. In particular, the efficacy of the measurement of the kinetic properties for pulsed recordings of thin and volume holographic gratings was demonstrated. The lifetimes of the short- and long-lived trap levels involved in recording of the dynamic grating were determined in a photorefractive bismuth silicate crystal and the dependence of the diffraction efficiency of the gratings on the intensity of the recording radiation was determined. The advantages of using an additional grating (homodyne) to enable the separation of the contributions of different simultaneously manifesting nonlinearity mechanisms were demonstrated. This method was applied to monocrystalline germanium. A method for assessing the thickness of a film on the surface of a sample based on the amplitude of an oscillating component related to a sound wave propagating in air in the vicinity of the film’s surface was also proposed. A silicon dioxide film was considered as an example. The application of the diffraction to different orders on volume dynamic gratings was proposed for the measurement of the nonlinear optical susceptibility of the fifth and higher orders. The proposed approach was evaluated on photorefractive crystals and semiconductor media. The kinetic and thermo-optic properties, including the time of the population of trap levels, thermo-optic coefficient, and thermal diffusivity, of the media were determined. Practical significance. The proposed characterization methods facilitate the isolation of different nonlinearity mechanisms involved in the formation of dynamic gratings and the measurement of nonlinear optical, thermo-optic, and kinetic properties (optical susceptibilities of different orders, thermo-optic coefficient, thermal diffusivity, and lifetimes of free-charge carriers and trap levels).

Keywords:

holography, nonlinear optics, dynamic gratings, optical susceptibility, thermal diffusivity, photorefractive crystals, semiconductors

OCIS codes: 050.2770, 090.5694

References:

1. A. S. Rubanov, A. L. Tolstik, S. M. Karpuk, and O. Ormachea, “Nonlinear formation of dynamic holograms and multiwave mixing in resonant media,” Opt. Commun. 181, 183–190 (2000).
2. A. L. Tolstik, Multiwave Interaction in Compound Organic Matter Solutions (BGU, Minsk, 2002).
3. I. N. Agishev and A. L. Tolstik, “Highly effective six-wave mixing in linearly absorbing organic liquids,” Tech. Phys. Lett. 35, 746–749 (2009).
4. E. V. Ivakin, I. G. Kisialiou, V. G. Ralchenko, A. P. Bolshakov, E. E. Ashkinazi, and G. V. Sharonov, “Investigation of free charge carrier dynamics in single-crystalline CVD diamond by two-photon absorption,” Quantum Electron. 44, 1055–1060 (2014).
5. E. V. Ivakin, L. G. Kisialiou, and O. L. Antipov, “Laser ceramics Tm:Lu2 O3 . Thermal, thermo-optical, and spectroscopic properties,” Opt. Mater. 35, 499–503 (2013).
6. I. G. Dadenkov, A. L. Tolstik, Yu. I. Miksyuk, and K. A. Saechnikov, “Photoinduced absorption and pulsed recording of dynamic holograms in bismuth silicate crystals,” Opt. Spectrosc. 128, 1401–1406 (2020).
7. A. M. Nastas, M. S. Iovu, I. N. Agishev, I. V. Gavrusenok, E. A. Melnikova, I. V. Stashkevitch, and A. L. Tolstik, “Formation of holographic diffraction gratings in thin films of chalcogenide glassy semiconductors,” Zh. Beloruss. Gos. Univ. Fiz. (3), 4–11 (2021).
8. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992).
9. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
10. N. I. Nazhestkina, A. A. Kamsyilin, O. V. Kobozev, and V. V. Prokofiev, “Detection of small phase modulation using two-wave mixing in photorefractive crystals,” Appl. Phys. B. 72(6), 767–773 (2001).
11. Yu. F. Kargin, V. I. Burkov, A. A. Mar’in, and A. V. Egoryshev, Bi12 Six O20−δ Crystals with Sillenite Structure: Synthesis, Structure, Properties (Izd. IOKhN RAN, Moscow, 2004).
12. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
13. S. Wevering, J. Imbrock, and E. Kratzig, “Relaxation of light-induced absorption changes in photorefractive lithium tantalate crystals,” J. Opt. Soc. Am. B 18, 472–478 (2001).
14. A. Matusevich, A. Tolstik, M. Kisteneva, S. Shandarov, V. Matusevich, A. Kiessling, and R. Kowarschik, “Investigation of photo-induced absorption in a Bi12 TiO20 ,” Appl. Phys. B 92(2), 219–224 (2008).
15. A. Matusevich, A. Tolstik, M. Kisteneva, S. Shandarov, V. Matusevich, A. Kiessling, and R. Kowarschik, “Methods for controlling of the laser-induced absorption in a BTO crystal by using of cw-laser radiation,” Appl. Phys. B 96(1), 119–125 (2009).
16. M. G. Kisteneva, A. S. Akrestina, D. O. Sivun, R. V. Kiselev, S. M. Shandarov, S. V. Smirnov, A. L. Tolstik, I. N. Agishev, A. V. Stankevich, and Yu. F. Kargin, “Photoinduced light absorption dynamics in sillenite crystals under irradiation with pulses of picosecond duration,” Dokl. Tomsk. Gos. Univ. Syst. Upr. Radioelektron. 22(2), 62–65 (2010).
17. E. S. Khudyakova, M. G. Kisteneva, S. M. Shandarov, T. A. Kornienko, A. L. Tolstik, and Yu. F. Kargin, “Dynamics of light-absorption variations induced in a bismuth silicate crystal by visible laser illumination,” Radiophys. Quantum Electron. 57(8–9), 589–594 (2015).
18. T. Kornienko, M. Kisteneva, S. Shandarov, and A. Tolstik, “Light-induced effects in sillenite crystals with shallow and deep traps,” Phys. Procedia 86, 105–112 (2017).
19. A. L. Tolstik, A. Yu. Matusevich, M. G. Kisteneva, S. M. Shandarov, S. I. Itkin, A. E. Mandel’, Yu. F. Kargin, Yu. N. Kulchin, and R. V. Romashko, “Spectral dependence of absorption photoinduced in a Bi12 TiO20 crystal by 532-nm laser pulses,” Quantum Electron. 37(11), 1027–1032 (2007).
20. S. M. Shandarov, N. I. Burimov, Y. N. Kulchin, R. V. Romashko, A. L. Tolstik, and V. V. Shepelevich, “Dynamic Denisyuk holograms in cubic photorefractive crystals,” Quantum Electron. 38, 1059–1069 (2008).
21. J. P. Hermann, J. P. Herriau, and J. P. Huignard, “Nanosecond four-wave mixing and holography in BSO crystals,” Appl. Opt. 20, 2173–2174 (1981).
22. J. P. Partanen, P. Nouchi, J. M. C. Jonathan, and R. W. Hellwarth, “Comparison between holographic and transient photocurrent measurements of electron mobility in photorefractive Bi12 SiO20 ,” Phys. Rev. B 44, 1487–1491 (1991).
23. J. G. Murillo, “Photorefractive grating dynamics in Bi12 SiO20 using optical pulses,” Opt. Commun. 159, 293–300 (1999).
24. A. V. Stankevich, A. L. Tolstik, and H. K. Hanoon, “Photoinduced absorption in bismuth titanate crystals on nano- and picosecond excitation,” Tech. Phys. Lett. 37(8), 746 (2011).
25. J. P. Roger, F. Lepoutre, D. Fournier, and A. C. Boccara, “Thermal diffusivity measurement of micron-thick semiconductor films by mirage detection,” Thin Solid Films 155, 165–174 (1987).
26. A. N. Magunov, Laser Thermometry of Solid Bodies (Fizmatlit, Moscow, 2002).
27. D. W. Pohl, S. E. Schwarz, and V. Irniger, “Forced Rayleigh scattering,” Phys. Rev. Lett. 31(1), 32–38 (1973).