ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-05-72-77

УДК: 535.37, 538.958

Synthesis and optical properties of heterogeneous film structure based on InP/InAsP/InP nanowires

For Russian citation (Opticheskii Zhurnal):

Хребтов А.И., Кулагина А.С., Данилов В.В., Драгунова А.С., Котляр К.П., Резник Р.Р., Цырлин Г.Э. Синтез и оптические свойства гетерогенной пленочной структуры на основе нитевидных нанокристаллов InP/InAsP/InP // Оптический журнал. 2022. Т. 89. № 5. С. 72–77. http://doi.org/ 10.17586/1023-5086-2022-89-05-72-77

 

Khrebtov A.I., Kulagina A.S., Danilov V.V., Dragunova A.S., Kotlyar K.P., Reznik R.R., Cirlin G.E. Synthesis and optical properties of heterogeneous film structure based on InP/InAsP/InP nanowires [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 5. P. 72–77. http://doi.org/ 10.17586/1023-5086-2022-89-05-72-77

For citation (Journal of Optical Technology):

A. I. Khrebtov, A. S. Kulagina, V. V. Danilov, A. S. Dragunova, K. P. Kotlyar, R. R. Reznik, and G. E. Cirlin, "Synthesis and optical properties of heterogeneous film structure based on InP/InAsP/InP nanowires," Journal of Optical Technology. 89(5), 298-301 (2022). https://doi.org/10.1364/JOT.89.000298

Abstract:

Subject of study. The dependence of the photoluminescence of a flexible film structure, which is an array of InP/InAsP/InP nanowires incorporated into a polymerized trioctylphosphine oxide layer with CdSe/ZnS colloidal quantum dots, on the intensity of excitation in the near-infrared range at room temperature was investigated in this study. Method. Nanowires were synthesized on a Si (III) substrate by molecular beam epitaxy using a Riber Compact 21 setup. A polymerized film formed after application of a colloidal solution of trioctylphosphine oxide and CdSe/ZnS quantum dots in toluene on the substrate. This film could be easily detached from the substrate. A continuous Nd+3:yttrium lithium fluoride laser with a wavelength of 527 nm acted as an excitation source in spectral measurements. The emission power varied in the range of 15–100 mW. Main results. A method for fabrication of a flexible film structure comprising an array of semiconductor nanowires and colloidal quantum dots was demonstrated. A nonlinear dependence of the photoluminescence intensity on the intensity of exciting radiation was obtained. It was attributed to the light quenching effect. A mechanism for the increase in the photoluminescence intensity in the film structure is proposed. Practical significance. Considering the position of the maximum in the photoluminescence band in the vicinity of 1.3 µm, the proposed film heterostructure can be advantageous for integration with fiber-optic systems.

Keywords:

Thread-like nanocrystals, quantum dots, photoluminescence, flexible electronics

Acknowledgements:

Experimental models synthesis was carried out with financial support of the Ministry of Science and Higher Education within the state assignment No. 0791-2020-0003. The research of the constructive properties of the models was supported by the grant of the Russian Science Foundation No. 21-72-00099. The research of the optical properties of received nanostructures was carried out within the Fundamental research program of National Research University Higher School of Economics. 

OCIS codes: 300.2530, 300.6340, 300.6470

References:

1. Guan N., Dai X., Babichev A.V., Julien F.H., Tchernycheva M. Flexible inorganic light emitting diodes based on semiconductor nanowires // Chem. Sci. 2017. V. 8. Р. 7904–7911.
2. Yang Y., Lin Z., Hou T., Zhang F., Wang Z.L. Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors // Nano Research. 2012. V. 5. № 12. P. 888–895.
3. Kang K., Cho Y., Yu K.J. Novel nano-materials and nano-fabrication techniques for flexible electronic systems // Micromachines. 2018. V. 9. № 6. Р. 263.
4. Wang J., Muhammad H., Liu J., Yu S. Nanowire assemblies for flexible electronic devices: Recent advances and perspectives // Advanced Materials. 2018. V. 30. Р. 1803430.
5. Dai X., Messanvi A., Zhang H., Durand C., Eymery J., Bougerol C., Julien F.H., Tchernycheva M. Flexible light-emitting diodes based on vertical nitride nanowires // Nano Lett. 2015. V. 15. P. 6958–6964.
6. Vershinin A.V., Soshnikov I.P., Kotlyar K.P., Kudryashov D.A., Samsonenko Y.B., Lysak V.V., Cirlin G.E. InP nanowires on Si (111) for piezotronic applications // J. Phys.: Conf. Ser. 2021. V. 1851. Р. 012014.
7. Reznik R.R, Cirlin G.E., Shtrom I.V., Khrebtov A.I., Soshnikov I.P., Kryzhanovskaya N.V., Moiseev E.I., Zhukov A.E. Coherent growth of InP/InAsP/InP nanowires on a Si (111) surface by molecular-beam epitaxy // Techn. Phys. Lett. 2018. V. 44. № 2. P. 112–114.
8. Cirlin G.E., Reznik R.R., Samsonenko Y.B., Khrebtov A.I., Kotlyar K.P., Ilkiv I.V., Soshnikov I.P., Kirilenko D.A., Kryzhanovskaya N.V. Phosphorus-based nanowires grown by molecular-beam epitaxy on silicon // Semiconductors. 2018. V. 52. № 11. P. 1416–1419.
9. Khrebtov A.I., Reznik R.R., Ubyivovk E.V., Litvin A.P., Skurlov I.D., Parfenova P.S., Kulagina A.S., Danilov V.V., Cirlin G.E. Nonradiative energy transfer in hybrid nanostructureswith varied dimensionality // Semiconductors. 2019. V. 53. № 9. P. 1258–1261.
10. Khrebtov A.I., Kulagina A.S., Danilov V.V., Gromova E.S., Litvin A.P., Skurlov I.D., Reznik R.R., Shtrom I.V., Cirlin G.E. Luminescence photodynamics of hybrid-structured InP/InAsP/InP nanowires passivated by a layer of TOPO-CdSe/ZnS quantum dots // Semiconductors. 2020. V. 54. № 9. P. 1141–1146.
11. Khrebtov A.I., Danilov V.V., Kulagina A.S., Reznik R.R., Skurlov I.D., Litvin A.P., Safin F.M., Shmakov S.V., Yablonskii A.N., Cirlin G.E. Influence of TOPO and TOPO-CdSe/ZnS quantum dots on luminescence photodynamics of InP/InAsP/InP heterostructure nanowires // Nanomaterials. 2021. V. 11. P. 640–649.
12. Danilov V.V., Mazurenko Y.T., Vorontsova S.I. Anti-stokes excitation of luminescence of dyes by high-power radiation // Opt. Commun. 1973. V. 9. № 3. P. 283–286.
13. McGuire J.A., Sykora M., Robel I., Padilha L.A., Joo J., Pietryga M.J., Klimov V.I. spectroscopic signatures of photocharging due to hot-carrier transfer in solutions of semiconductor nanocrystals under low-intensity ultraviolet excitation // ACS Nano. 2010. V. 4. № 10. P. 6087–6097.
14. Marceddu M., Saba M., Quochi F., Lai A., Huang J.,Talapin D.V., Mura A., Bongiovanni G. Charged excitons, Auger recombination and optical gain in CdSe/CdS nanocrystals // Nanotechnology. 2012. V. 23. Р. 015201.
15. Klimov V.I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication // Annu. Rev. Condens. Matter Phys. 2014. V. 5. № 1. P. 285–316.
16. Vaxenburg R., Rodina A., Shabaev A., Lifshiz E., Efros A.L. Nonradiative Auger recombination in semiconductor nanocrystals // Nano Lett. 2015. V. 5. № 1. P. 2092–2098.