ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-05-78-91

УДК: 621.38, 628.955, 620.92

Improving the efficiency of solar cells based on CsSn0.5Ge0.5I3 perovskite by using ZnO nanorods

For Russian citation (Opticheskii Zhurnal):

Mehrabian M., Afshar E.N. Improving the efficiency of solar cell based on CsSn0.5Ge0.5I3 perovskite by using ZnO nanorods. Повышение эффективности солнечных элементов на основе перовскита CsSn0,5Ge0,5I3 с помощью наностержней ZnO [на англ. яз.] // Оптический журнал. 2022. Т. 89. № 5. С. 78–91. http://doi.org/10.17586/1023-5086-2022-89-05-78-91

 

Mehrabian M., Afshar E.N. Improving the efficiency of solar cell based on CsSn0.5Ge0.5I3 perovskite by using ZnO nanorods. Повышение эффективности солнечных элементов на основе перовскита CsSn0,5Ge0,5I3 с помощью наностержней ZnO [in English] // Opticheskii Zhurnal. 2022. V. 89. № 5. P. 78–91. http://doi.org/ 10.17586/1023-5086-2022-89-05-78-91

For citation (Journal of Optical Technology):

Masood Mehrabian and Elham Norouzi Afshar, "Improving the efficiency of solar cells based on CsSn0.5Ge0.5I3 perovskite by using ZnO nanorods," Journal of Optical Technology. 89(5), 302-311 (2022). https://doi.org/10.1364/JOT.89.000302

Abstract:

Subject of research. The environmental friendly tin and germanium-based halide perovskite materials are promising candidates attracting more attention as lead-free halide perovskite solar cells. However, the limited power conversion efficiency of these perovskites is an important issue in solar cells field. Therefore, in present study, a different lead-free perovskite was used to reach higher power conversion efficiency power conversion efficiency. Devices with Indium Tin Oxide/Electron transport layer/Perovskite/Hole transport layer/Ag structure but different absorber layers were simulated. Simulation was done using the solar cell capacitance simulator SCAPS-1D to investigate the photovoltaic performance of solar cells with CsGeI3 and CsSnI3 perovskites as absorber layer. Methodology. Simulation was done by using of SCAPS software which is a one dimensional solar cell simulation platform developed at the Department of Electronics and Information Systems of the University of Gent, Belgium. Main results. The effect of absorber layer thickness was investigated
and maximum power conversion efficiency of 10.51% was obtained for 1000 nm thick of CsGeI3, while maximum value of 12.83% was obtained for 400 nm thick of CsGeI3. Then for further increase the efficiency, devices with an alternative lead-free CsSn0.5Ge0.5I3 perovskite including planar ZnO layer and ZnO nanorod arrays as electron transport layers was used in simulation and the thickness of absorber layer was optimized for both devices. For maximum power conversion efficiency of devices, the values of 17.56 and 22.61% were achieved for devices with ZnO layer and ZnO-NR respectively. It is note to that simulation results of this study could provide a perspective towards fabricating an environmental friendly perovskite-based solar cell. Practical significance. The main significance of present work is obtaining a significant power conversion efficiency of 22.61% for a device based on environmental friendly perovskite.
A similar work was done in 2021 by M. Azadinia et al., which a comparable power conversion efficiency of 26.9% was reported for a device with CsSn1–xGexI3 perovskite.

Keywords:

lead-free perovskite, CsGeI3, CsSnI3, CsSn0.5Ge0.5I3, ZnO nanorods

OCIS codes: 250.0250

References:

1. Azadinia M., Ameri M., Ghahrizjani R. T., and Fathollahi M. Maximizing the performance of single and multijunction MA and lead-free perovskite solar cell // Mater. Today Energy. 2021. V. 20. P. 100647.
2. Sachchidanand G.V., Kumar A., and Sharma P. Numerical simulation of novel lead-free Cs3Sb2Br9 absorberbased highly efficient perovskite solar cell // Opt. Mater. 2021. V. 122. P. 111715.
3. Sahli F., Werner J., Kamino B.A., Bräuninger M., Monnard R., Paviet-Salomon B., Barraud L., Ding L., Diaz Leon J.J., Sacchetto D., Cattaneo G., Despeisse M., Boccard M., Nicolay S., Jeangros Q., Niesen B., and Ballif C. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency // Nat. Mater. 2018. V. 17. № 9. P. 820–826.
4. Khadka D.B., Shirai Y., Yanagida M., and Miyano K.Tailoring the film morphology and interface band offset of caesium bismuth iodide-based Pb-free perovskite solar cells // JMCC. 2019. V. 7. № 9. P. 8335–8343.
5. Johansson M.B., Zhu H., and Johansson E.M.J. Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells // J. Phys. Chem. Lett. 2016. V. 7. № 17. P. 3467–3471.
6. Roknuzzaman M., Ostrikov K., Wang H., Du A., and Tesfamichael T. Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations // Sci. Rep. 2017. V. 7. № 1. P. 14025.
7. Kopacic I., Friesenbichler B., Hoefler S.F., Kunert B., Plank H., Rath T., and Trimmel G. Enhanced performance of germanium halide perovskite solar cells through compositional engineering // ACS Appl. Energy Mater. 2018. V. 1. № 2. P. 343–347.
8. Raj A., Kumar M., Bherwani H., Gupta A., and Anshul A. Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via scaps simulation // J. Vac. Sci. Technol. B. 2020. V. 39. № 1. P. 012401.
9. Krishnamoorthy T., Ding H., Yan C., Leong W.L., Baikie T., Zhang Z., Sherburne M., Li S., Asta M., Mathews N., and Mhaisalkar S.G. Lead-free germanium iodide perovskite materials for photovoltaic applications // J. Mater. Chem. A. 2015. V. 3. № 47. P. 23829–23832.
10. Chen L.J. Synthesis and optical properties of lead-free cesium germanium halide perovskite quantum rods // RSC Adv. 2018. V. 8. № 33. P. 18396–18399.
11. Chen Z., Wang J.J., Ren Y., Yu C., and Shum K. Schottky solar cells based on CsSnI3 thin-films // Appl. Phys. Lett. 2012. V. 101. № 9. P. 093901.
12. Zhu P., Chen C., Gu S., Lin R., and Zhu J. CsSnI3 solar cells via an evaporation-assisted solution method // Sol. RRL. 2018. V. 2. № 9. P. 1700224.
13. Song T.-B., Yokoyama T., Logsdon J., Wasielewski M.R., Aramaki S., and Kanatzidis M.G. Piperazine suppresses self-doping in CsSnI3 perovskite solar cells // ACS Appl. Energy Mater. 2018. V. 1. № 8. P. 4221–4226.
14. Ameri M., Ghaffarkani M., Ghahrizjani R.T., Safari N., and Mohajerani E. Phenomenological morphology design of hybrid organic-inorganic perovskite solar cell for high efficiency and less hysteresis // Sol. Energy Mater. Sol. Cells. 2020. V. 205. P. 110251.
15. Ahmadi S.H., Ghaffarkani M., Ameri M., Safari N., and Mohajerani E. Solvent selection for fabrication of low temperature ZnO electron transport layer in perovskite solar cells // Opt. Mater. 2020. V. 106. P. 109977.
16. Burgelman M., Nollet P., and Degrave S. Modelling polycrystalline semiconductor solar cells // Thin Solid Films. 2000. V. 361. № 1–2. P. 527–532.
17. Burgelman M., Decock K., Niemegeers A., Verschraegen J., and Degrave S. SCAPS manual. 2016.
18. Ye T., Wang K., Hou Y., Yang D., Smith N., Magill B., Yoon J., Mudiyanselage R.R.H.H., Khodaparast G.A., Wang K., and Priya S. Ambient-air-stable lead-free CsSnI3 solar cells with greater than 7.5% efficiency // J. Am. Chem. Soc. 2021. V. 143. № 11. P. 4319–4328.
19. Agarwal S., Nair P.R. Device engineering of perovskite solar cells to achieve near ideal efficiency // Appl. Phys. Lett. 2015. V. 107. № 12. P. 123901.
20. Alam I., Ashraf M.A. Effect of different device parameters on tin-based perovskite solar cell coupled with In2S3 electron transport layer and CuSCN and Spiro-OMeTAD alternative hole transport layers for highefficiency performance // Energy Sources. 2020. Part A. P. 1–17.

21. Hussain S.S., Riaz S., Nowsherwan G.A., Jahangir K., Raza A., Iqbal M.J., Sadiq I., Hussain S.M., and Naseem S. Numerical modeling and optimization of lead-free hybrid double perovskite solar cell by using SCAPS-1D // J. Renewable Energy. 2021. P. 6668687.
22. Palummo M., Varsano D., Berríos E., Yamashita K., and Giorgi G. Halide Pb-free double–perovskites: Ternary vs quaternary stoichiometry //Energies. 2020. V. 13. № 14. P. 3516.
23. Huang L.-Y., Lambrecht W.R.L. Vibrational spectra and nonlinear optical coefficients of rhombohedral $\mathrm{CsGe}{X}_{3}$ halide compounds with $X=\mathrm{I}$, Br, Cl // Phys. Rev. B. 2016. V. 94.
№ 14. P. 115202.
24. Sani F., Shafie S., Lim H.N., and Musa A.O. Advancement on lead-free organic-inorganic halide perovskite solar cells: A review // Materials. 2018. V. 11. № 6. P. 1006.
25. Alam I., Mollick R., and Ashraf M.A. Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers // Phys. B. 2021. V. 618. P. 413187.
26. Tan K., Lin P., Wang G., Liu Y., Xu Z., and Lin Y. Controllable design of solid-state perovskite solar cells by SCAPS device simulation // Solid-State Electron. 2016. V. 1100. № 126. P. 75–80.
27. Mohd Shariff N.S., Mohamad Saad P.S., and Mahmood M.R. Capacitance voltage of P3HT: Graphene nanocomposites based bulk-heterojunction organic solar cells // IOP Conf. Series. Mater. Sci. Eng. 2015. V. 99. № 1. P. 012005.
28. Mauk P.H., Tavakolian H., and Sites J.R. Interpretation of thin-film polycrystalline solar cell capacitance // IEEE Trans. Electron Devices. 1990. V. 37. № 1. P. 422–427.