DOI: 10.17586/1023-5086-2022-89-06-25-32
УДК: 535.317
Two-component compensators of field aberrations of optical systems
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Андреев Л.Н., Цыганок Е.А., Ежова В.В., Кожина А.Д., Сошникова Е.Б. Двухкомпонентные компенсаторы полевых аберраций оптических систем // Оптический журнал. 2022. Т. 89. № 6. С. 25–32. http://doi.org/10.17586/1023-5086-2022-89-06-25-32
Andreev L.N., Tsyganok E.A., Ezhova V.V., Kozhina A.D., Soshnicova E.B. Two-component compensators of field aberrations of optical systems [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 6. P. 25–32. http://doi.org/10.17586/1023-5086-2022-89-06-25-32
L. N. Andreev, E. A. Tsyganok, V. V. Ezhova, A. D. Kozhina, and E. B. Soshnicova, "Two-component compensators of field aberrations of optical systems," Journal of Optical Technology. 89(6), 327-331 (2022). https://doi.org/10.1364/JOT.89.000327
Subject of study. Two-component optical schemes of compensators of field aberrations of optical systems calculated based on the third-order aberration theory and modular method of optical system design [Izv. Vyssh. Uchebn. Zaved., Priborostr.57, 57 (2014)] are proposed. These compensators enable correction of two aberrations: Petzval field curvature and astigmatism or longitudinal chromatic aberration and lateral color or transverse chromatic aberration. Method. A modular method for the design of optical systems based on the third-order aberration theory was used in the calculation. This method consists of synthesis of the systems using optical elements (modules) with known correcting properties [Izv. Vyssh. Uchebn. Zaved., Priborostr.57, 57 (2014)]. Aplanatic menisci with different linear magnifications and a hyperchromatic lens were used as optical modules. The aplanatic menisci were used to calculate the compensator of Petzval field curvature and astigmatism, whereas the hyperchromatic lens was used to calculate the compensator of longitudinal and transverse chromatic aberrations. Main results. The use of two-component compensators of field aberrations enables significant enhancements in the aberrational properties of the objectives, improves the image quality of optical systems, and increases their optical parameters, particularly the angular field of doublet objectives (fivefold) using the correcting properties of optical modules (menisci and hyperchromatic lens). Practical significance. The introduction of a compensator composed of two aplanatic menisci positioned at a significant distance from each other into the optical system makes it possible to correct such aberrations as field curvature and astigmatism regardless of the number of lenses in the objective and increase the angular field. The introduction of a compensator of chromatic aberrations into an optical scheme of a high-aperture microscope objective with 100×1.25 oil immersion corrects the longitudinal and transverse chromatic aberrations. This makes it possible to cease the use of compensating eyepieces with a complex optical scheme and replace them with standard eyepieces as well as to use a microscope where the optical radiation is detected by a charge-coupled device array or complementary metal oxide semiconductor detector instead of the human eye.
compensator, abberations, surface curvature, astigmatism, enlargment chromatism, position chromatism
OCIS codes: 220.1000
References:1. L. N. Andreev, V. V. Ezhova, and G. S. Degtyareva, “Modular design of optical systems,” Izv. Vyssh. Uchebn. Zaved., Priborostr. 57(3), 57–62 (2014).
2. H. Gross, Handbook of Optical Systems, Vol. 4: Survey of Optical Instruments (Wiley, Hoboken, 2008).
3. V. N. Mahajan, Aberration Theory Made Simple (SPIE Press, Bellingham, 2011).
4. B. D. Guenther, Modern Optics (Oxford University Press, Oxford, 2015).
5. L. N. Andreev and G. S. Degtyareva, “Afocal compensator of aberrations,” Izv. Vyssh. Uchebn. Zaved., Priborostr. 58(8), 621–624 (2015).
6. G. G. Slyusarev, Calculation of Optical Systems (Mashinostroenie, Leningrad, 1975).
7. M. M. Rusinov, Composition of Optical Systems (Librokom, Moscow, 2010).
8. I. A. Turygin, Applied Optics: Part I (Glavpoligrafprom, Moscow, 1965).
9. I. A. Turygin, Applied Optics: Part II (Glavpoligrafprom, Moscow, 1966).
10. V. A. Panov and L. N. Andreev, Optics of Microscopes (Mashinostroenie, Leningrad, 1976).
11. G. S. Degtyareva, “Synthesis of optical systems composed of aplanatic modules and aberration compensators,” Doctoral thesis (Universitet ITMO, St. Petersburg, 2015).
12. A. P. Grammatin, “Calculation of the Schmidt corrector,” Nauchno-Tekh. Vestn. SPbGU ITMO (4), 183–186 (2004).
13. R. O. Wayne, Light and Video Microscopy (Academic Press, Cambridge, 2014).
14. T. S. Tkaczyk, Field Guide to Microscopy (SPIE Press, Bellingham, 2010).
15. J. Sasián, “Control of linear astigmatism aberration in a perturbed axially symmetric optical system and tolerancing,” Appl. Sci. 11(9), 3928 (2021).
16. L. N. Andreev and G. S. Degtyareva, “Afocal compensator of Petzval field curvature,” Russian utility patent 148389 (2014).
17. L. N. Andreev, G. S. Degtyareva, and V. V. Ezhova, “Symmetrical compensators of spherical aberration,” J. Opt. Technol. 82(1), 21–23 (2015) [Opt. Zh. 82(1), 28–31 (2015)].
18. L. N. Andreev and V. V. Ezhova, “Afocal compensators of optical system aberrations,” Izv. Vyssh. Uchebn. Zaved., Priborostr. 60(7), 660–663 (2017).
19. V. V. Ezhova and L. N. Andreev, “Afocal compensators of optical systems aberrations,” Proc. SPIE 10690, 106901W (2018).
20. V. V. Ezhova, “Modular design of optical systems for different purposes,” in Collection of Projects of Ph.D. Students of ITMO University That Won Grants from the Government of St. Petersburg, V. O. Nikiforov, ed. (Universitet ITMO, St. Petersburg, 2016), pp. 88–91.
21. L. N. Andreev, V. V. Ezhova, E. A. Tsyganok, and A. D. Kozhina, “Compensators of Petzval field curvature and astigmatism,” J. Opt. Technol. 88(4), 175–177 (2021) [Opt. Zh. 88(4), 12–16 (2021)].
22. L. N. Andreev, A. D. Kozhina, E. A. Tsyganok, E. B. Soshnikova, and A. V. Uvarova, “Investigation and calculation of a plan apochromatic objective with corrected transverse chromatic aberration,” in Proceedings of the XVIII All-Russian Youth Conference of Scientific Works on Optics and Laser Physics in Samara (2020), pp. 130–136.
23. L. N. Andreev, “Differential expressions for first-order chromatic aberrations of a hyperchromatic lens,” Opt.-Mekh. Prom-st. (11), 23–24 (1970).
24. S. E. Ivanov and G. E. Romanova, “Two-lens afocal compensator for thermal defocus correction of a catadioptric system,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. 17(3), 372–379 (2017).
25. T. Mizuno and T. Yamada, “Objective lens and optical pickup apparatus, information recording/reproducing apparatus,” US patent 7054074B2 (2006).