ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-06-64-72

УДК: 535.4

Research on the performance of fiber optical current transformer for high voltage filtering capacitor unbalanced current measurement

For Russian citation (Opticheskii Zhurnal):

Jun Zhao, Shengguo Xu, Baofeng Wu, Xiaohan Sun. Исследование характеристик волоконно-оптического трансформатора тока для измерения тока дисбаланса высоковольтного фильтрующего конденсатора. Research on the performance of fiber optical current transformer for high voltage filtering capacitor unbalanced current measurement  [на англ. яз.] // Оптический журнал. 2022. Т. 89. № 6. С. 64–72. http://doi.org/ 10.17586/1023-5086-2022-89-05-64-72

 

Jun Zhao, Shengguo Xu, Baofeng Wu, Xiaohan Sun. Исследование характеристик волоконно-оптического трансформатора тока для измерения тока дисбаланса высоковольтного фильтрующего конденсатора. Research on the performance of fiber optical current transformer for high voltage filtering capacitor unbalanced current measurement [in English] // Opticheskii Zhurnal. 2022. V. 89. № 6. P. 64–72. http://doi.org/ 10.17586/1023-5086-2022-89-05-64-72

For citation (Journal of Optical Technology):

Jun Zhao, Shengguo Xu, Baofeng Wu, and Xiaohan Sun, "Research on the performance of a fiber optical current transformer for high voltage filtering capacitor unbalanced current measurement," Journal of Optical Technology. 89(6), 353-358 (2022). https://doi.org/10.1364/JOT.89.000353

Abstract:

Subject of study. A fiber-optic measurement scheme for unbalanced current of high-voltage filtering capacitor is proposed, where an all-fiber temperature sensor based on temperature birefringence is presented to realize the real-time correction of temperature errors. Method. The prototypes of the all-fiber filter unbalanced fiber optical current transformer type and magneto-optical crystal type with a rated current of 1 A and rated voltage of 258 kV have been developed and performance tested. Main results. After temperature correction, the accuracy of all-fiber filter unbalanced fiber optical current transformer type in the range of −40 °C to 70 °C meets the error limit requirements of class 0.2 specified in the Chinese Standard: GB/T 20840.8-2007 ( Instrument transformers — Part 8: Electronic current transformers standard), whose accuracy, integration, reliability and anti-interference ability are better than magneto-optical crystal type. Instrument transformers — Part 8: Electronic current transformers standard whose accuracy, integration, reliability and anti-interference ability are better than magneto-optical crystal type. Practical significance. The proposed scheme has the ability of small current (less than 20 mA) measurement in high voltage (more than 110 kV) scenarios.

Keywords:

high-voltage filtering capacitor, fiber optical current transformer, fiber temperature sensor, temperature correction, accuracy

Acknowledgements:

Aeronautical Science Foundation of China (2019ZH069003); Scientific research projects of ministry and provincial key laboratories in China (2242020k30035).

OCIS codes: 060.2370

References:

1. Lv W., Xie H., Xu Q., Shen C., Chen F. The impacts of AC filters to power grid harmonic in UHVDC converter station // Proc. of the 2nd IEEE Conference on Energy Internet and Energy System Integration. Beijing, China. 20–22 Oct. 2018.

2. Wang H., Tan Y., Wang X., Luo L., Liu L. Mou X. Research on configuration and switching strategy of AC filter for Shaoshan Converter Station // Proc. of the 2nd IEEE Conference on Energy Internet and Energy System Integration. Beijing, China. 20–22 Oct. 2018.
3. Sheng H., Wang F., Tipton C. A fault detection and protection scheme for three-level DC-DC converters based on monitoring flying capacitor voltage // IEEE T. Power Electr. 2012. V. 27. № 2. P. 685–697.
4. Santos H., Paulino J., Boaventura W., Baccarini L., Murta M. Harmonic distortion influence on grounded wye shunt capacitor banks protection: Experimental results // IEEE T. Power Deliver. 2013. V. 28. № 3. P. 1289–1296.
5. Ripka P. Electric current sensors: a review // Meas. Sci. Technol. 2010. V. 21. № 11. P. 1–23.
6. Chen Y.F., Huang Q., Khawaja A.H. A novel non-invasion magnetic sensor array based measurement method of large current // Measurement. 2019. V. 139. P. 78–84.
7. Wang H., Fu Z.H., Wang Y. A time-domain feedback calibration method for air-coil magnetic sensor // Measurement. 2019. V. 135. P. 61–70.
8. Vitsinskii S., Lovchii I., Mokeev S. Fiber-optic ac transformers // J. Opt. Technol. 2003. V. 70. № 4. P. 225–229.
9. Wang L.H., Wei G.J., Zhu Y.N., Liu J., Tian Z.Q. Real-time modeling and online filtering of the stochastic error in a fiber optic current transducer // Meas. Sci. Technol. 2016. V. 27. № 10. P. 1–6.
10. Kucuksari S., Karady G.G. Experimental comparison of conventional and op-tical current transformers // IEEE T. Power Deliver. 2010. V. 25. № 4. P. 2455–2463.
11. Wang Z.P., Wang X.Z. Theoretical analysis of the temperature characteristics of an optical current sensing element // Measurement. 2009. V. 42. № 2. P. 277–280.
12. Muller G.M., Yang L., Gulenaltin B., Frank A., Bohnert K. Tempera-ture compensation of fiber-optic current sensors // Proc. of the 23rd interna-tional conference on optical fiber sensors. Santender, Spain. 2 June. 2014. P. 915705-1–915705-4.
13. Miklós L., Robert W., Andreas F., Klaus B. Thermal tuning of fiber quarter-wave retarders for temperature compensation of fiber-optic current sensors // Proc. of the conference on optical sensors. Rio Grande, Puerto Rico United States. 14–17 July. 2013. Paper# SM3C.3.
14. Muller G.M., Frank A., Lenner M., Bohnert K., Gabus P., Guelenaltin B. Temperature compensation of fiber optic current sensors in different regimes of operation // Proc. of the 25th IEEE Photonics Conference. Burlingame. USA. 23–27 Sep. 2012. P. 745–746.
15. Bohnert K., Gabus P., Nehring J., Brandle H. Tempera-ture and vibration insensitive fiber-optic current sensor // J. Lightwave Technol. 2002. V. 20. № 2. P. 267–276.
16. Willsch M., Richter M., Kaiser J., Bosselmann T., Judendorfer T. Compensa-tion methods of the temperature dependence of glass ring type optical current sensors // Proc. of the 7th European Workshop on Optical Fibre Sensors. 01–04 Oct. 2019. Limassol. Cyprus. P. 1119904-1–1119904-4.
17. Yan Z.J., Zhou K.M., Zhang L. In-fiber linear polarizer based on UV-inscribed 45 degrees tilted grating in polarization maintaining fiber // Opt. Lett. 2012. V. 37. № 18. P. 3819–3821.
18. Bharathan G., Hudson D.D., Woodward R.I., Jackson S.D., Fuerbach A. In-fiber polarizer based on a 45-degree tilted fluoride fiber Bragg grating for mid-infrared fiber laser technology // OSA continuum. 2018. V. 1. № 1. P. 56–63.
19. Zhao J., Wang H., Sun X. Study on the performance of polarization maintain-ing fiber temperature sensor based on tilted fiber grating // Measurement. 2021. V. 168. № 10. P. 1–7.
20. Fitzpatrick C., Lewis E., Al-Shamma'a A., Lucas J. An optical fiber sensor for on-line temperature control of germicidal microwave plasma powered UV lamps // Measurement. 2003. V. 33. № 4. P. 341–346.
21. Zhan Y., Feng C., Shen Z., Xie N., Liu H., Xiong F., Wang S., Sun Z., Yu M. Fiber Bragg grating monitoring for composites in the out-of-autoclave curing process // J. Opt. Technol. 2018. V. 85. № 6. P. 371–376.
22. Sidorova A., Tsirukhin A. The effect of the ambient temperature and refrac-tive index on the spectral characteristics of long-period fiber gratings with a corrugated polymeric coating // J. Opt. Technol. 2010. V. 77. № 5. P. 339–343.