ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-06-81-89

УДК: 535.24, 535.341.08

Attenuation of a single pulse of a neodymium laser in colored optical glasses

For Russian citation (Opticheskii Zhurnal):

Мелик-Гайказов Г.В., Дмитриенко Д.Б., Кузнецов Г.П., Ассовский И.Г. Ослабление моноимпульса неодимового лазера в цветных оптических стёклах //
Оптический журнал. 2022. Т. 89. № 6. С. 81–89. http://doi.org/10.17586/1023-5086-2022-89-06-81-89

 

Melik-Gaikazov G.V., Dmitrienko D.B., Kuznetsov G.P., Assovskii I.G. Attenuation of a single pulse of a neodymium laser in colored optical glasses [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 6. P. 81–89. http://doi.org/10.17586/1023-5086-2022-89-06-81-89

For citation (Journal of Optical Technology):

G. V. Melik-Gaikazov, D. B. Dmitrienko, G. P. Kuznetsov, and I. G. Assovskii, "Attenuation of a single pulse of a neodymium laser in colored optical glasses," Journal of Optical Technology. 89(6), 365-370 (2022). https://doi.org/10.1364/JOT.89.000365

Abstract:

Subject of study. The energy of a laser flash was measured directly using a calorimeter. The shape of an optical pulse was recorded using a photocell. The intensity of the radiation converted to photocurrent is presented in relative units. The illuminance in a highly diffusive optical medium varied over a wide range. The photocell was calibrated directly using the laser to obtain the radiative energy balance in energy units. This was achieved by successively attenuating the energy of the laser beam using colored filters. Method. Attenuation of a single pulse of a neodymium laser (wavelength λ=1064nm, duration at the level of 0.5t1/2≈5×10−9s) passing through different types of colored filters was investigated. Main results. A significant discrepancy between the intensities of the transmitted radiation was found for samples with equal optical densities but composed of different types of glasses. Three groups of glasses with different transmission degrees and characters were identified. The experimental data were interpreted using a nonlinear radiation absorption model. Practical significance. Colored filters most suitable for operation under the specified conditions were selected experimentally. Yellow–green glass showed the best parameters. It was found that glasses with the highest absorption coefficients should not be used.

Keywords:

YAG: Nd3+ laser, nonlinear absorption, colored optical glasses, optical density

OCIS codes: 160. 2750, 140.3530

References:

1. B. A. Lengyel, Lasers: Generation of Light by Stimulated Emission (Mir, Moscow, 1964).
2. GOST 9411-91, “Colored optical glass” (1991).
3. T. I. Veinberg, Catalogue of Colored Glass (Mashinostroenie, Moscow, 1967).
4. G. T. Petrovskii, Colored Optical Glass and Special Glasses (Dom Optiki, Moscow, 1990).
5. I. I. Kitaigorodskii, Glass Processing (Gosstroiizdat, Moscow, 1961).
6. B. P. Nikol’skii, Chemist’s Handbook, vol. 1–4 (Khimiya, Leningrad, 1967).
7. M. V. Vol’kenshtein, Molecular Optics (GITTL, Moscow-Leningrad, 1951).
8. P. D. Sarkisov, V. N. Sigaev, N. V. Golubev, and V. I. Savinkov, “Optical phosphate glass,” Russian patent 2426701 (2011).
9. G. E. Malashevich, V. N. Sigaev, P. D. Sarkisov, N. V. Golubev, and V. I. Savinkov, “Glass,” Russian patent 2386596 (2010).
10. O. A. Zamyatin, M. F. Churbanov, V. G. Plotnichenko, A. A. Sibirkin, I. G. Fedotova, and S. A. Gavrin, “Specific absorption coefficient of copper in (TeO2 )0.80(MoO3 )0.20 glass,” Inorg. Mater. 51(12), 1283–1287 (2015).
11. E. E. Kornilova, S. P. Lun’kin, and M. Ya. Ugoleva, “Glass for color filters,” Inventor’s certificate 1632955A1, Byull. Izobret. (9), 4 (1991).
12. E. E. Kornilova and A. E. Yakuninskaya, “Glass for color filters,” Russian patent 2045488 (1995).
13. O. S. Shchavelev, N. Yu. Plutalova, A. D. Tsvetkov, and G. N. Lyubochskaya, “Colored glass,” Inventor’s certificate 587111, Byull. Izobret. (1), 4 (1978).
14. L. G. Mogil’naya, O. B. Zinov’eva, Yu. A. Firsova, and M. N. Gulyukin, “Colored optical glass,” J. Opt. Technol. 80(4), 254–255 (2013) [Opt. Zh. 80(4), 70–71 (2013)].
15. Yu. A. Firsova, M. N. Gulyukin, and D. A. Khramogin, “Neutral glasses and features of their synthesis in gas furnaces,” Kontenant 19(1), 24–28 (2020).
16. P. E. Gusev, V. I. Arbuzov, M. V. Voroshilova, S. I. Nikitina, A. D. Semenov, and Yu. K. Fedorov, “Effect of coloring impurities on the absorption in neodymium phosphate laser glass at a lasing wavelength,” Glass Phys. Chem. 32(2), 146–152 (2006).
17. G. S. Landsberg, Optics (Fizmatlit, Moscow, 2003).
18. D. S. Chunaev, G. E. Snopatin, V. G. Plotnichenko, and A. Ya. Karasik, “Two-photon absorption in arsenic sulfide glasses,” Quantum Electron. 46(10), 895–898 (2016).
19. D. S. Chunaev, O. A. Zamyatin, A. Ya. Karasik, and V. G. Plotnichenko, “Two-photon absorption in zinc tellurite glass of composition 70TeO2 –30ZnO,” Quantum Electron. 48(8), 715–716 (2018).
20. M. A. Kasymdzhanov, S. S. Kurbanov, E. A. Zakhidov, R. Yu. Rakhimov, and P. K. Khabibullaev, “One and two-photon absorption in multicomponent glasses and the measurement of cubic nonlinear susceptibility,” Opt. Spectrosc. 101(1), 109–113 (2006) [Opt. Spektrosk. 101(1), 115–119 (2006)].
21. Yu. S. Kuzyukina, “Peculiarities of the nonlinear optical response in chalcogenide glasses in the vicinity of the fundamental absorption edge,” Doctoral thesis (Saratovskii Gosudarstvennyi Universitet, Saratov, 2015).
22. V. M. Salmanov, A. G. Guseinov, R. M. Mamedov, A. A. Salmanova, and N. D. Dashdamirova, “Nonlinear optical absorption in GaSe upon laser excitation,” Opt. Spectrosc. 128(4), 501–504 (2020) [Opt. Spektrosk. 128(4), 513–516 (2020)].
23. S. M. Dolotov, L. M. Koldunov, M. F. Koldunov, A. V. Petukhov, and A. V. Sizyukhin, “Nonlinear absorption of laser radiation by zinc and lead phthalocyanines and zinc porphyrin in a nanoporous-glass/polymer composite,” Quantum Electron. 42(1), 39–43 (2012).
24. I. V. Blonskii, V. N. Kadan, O. I. Shpotyuk, I. A. Pavlov, and N. N. Kryuchkov, “Transient light absorption induced in glass by femtosecond laser pulses,” Quantum Electron. 39(10), 933–937 (2009).
25. V. G. Melekhin, E. V. Kolobkova, A. A. Lipovskii, V. D. Petrikov, A. M. Malyarevich, and V. G. Savitsky, “Fluorophosphate glasses doped with PbSe quantum dots and their nonlinear optical characteristics,” Glass Phys. Chem. 34(4), 351–355 (2008).
26. A. M. Mezhryukov, “Optical properties of silicate glasses under conditions of nonlinear absorption of laser emission,” Doctoral thesis (Universitet ITMO, St. Petersburg, 1994).
27. A. G. Korepanova, R. Yu. Krivenkov, and G. M. Mikheev, “Nonlinear absorption in red color filters at the wavelength of 1064 nm,” in Proceedings of the XIII International Scientific Conference on Instrumentation in the XXI Century: Integration of Science, Education, and Industry (2017), pp. 648–655.
28. I. I. Kondilenko, P. A. Korotkov, and A. I. Khizhnyak, Laser Physics (Vishcha Shkola, Kyiv, 1984).
29. N. V. Karlov, Lectures on Quantum Electronics (Nauka, Moscow, 1983).
30. I. K. Kikoin, Tables of Physical Constants (Atomizdat, Moscow, 1976).