ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-07-13-26

УДК: 53.086

Characterization of gap-plasmon-based metasurfaces with scanning white-light interferometry

For Russian citation (Opticheskii Zhurnal):

Ахмеджанов И.М., Баранов Д.В., Заведеев Е.В., Дешпандэ Руча А., Божевольный С.И. Характеризация плазмонных метаповерхностей с помощью сканирующей интерферометрии белого света // Оптический журнал. 2022. Т. 98. № 7. С. 13–26. http://doi.org/10.17586/1023-5086-2022-89-07-13-26

 

Akhmedzhanov I.M., Baranov D.V., Zavedeev E.V., Deshpande R.A., Bozhevolnyi S.I. Characterization of gap-plasmon-based metasurfaces with scanning white-light interferometry [in Russian] // Opticheskii Zhurnal. 2022. V. 98. № 7. P. 13–26. http://doi.org/10.17586/1023-5086-2022-89-07-13-26

For citation (Journal of Optical Technology):

I. M. Akhmedzhanov, D. V. Baranov, E. V. Zavedeev, R. A. Deshpande, and S. I. Bozhevolnyi, "Characterization of gap-plasmon-based metasurfaces with scanning white-light interferometry," Journal of Optical Technology. 89(7), 378-387 (2022). https://doi.org/10.1364/JOT.89.000378

Abstract:

Subject of study. The possibility of using the well-established method of scanning white-light interferometry (SWLI), implemented as a commercially available device, is studied for characterizing promising metasurfaces based on third-order plasmon resonance. The characteristics of the samples were determined for two types of experimental metasurfaces, namely, for a binary grating with a period of 12.6 µm and a phase gradient grating with a period of 6.75 µm. Objective. The main goals of this study were to test the fundamental possibility of using a commercially available white-light interferometer to determine the phase characteristics of plasmonic metasurfaces and to estimate experimentally the lateral optical resolution in the phase image of metasurfaces. Main results. Although the method of SWLI was originally intended for measuring a geometric microrelief, it was found that it can be used to determine the phase increment of the optical radiation reflected from the studied metasurfaces in the range of 10°–100° with a relative accuracy of approximately 50% without any modification of the signal processing algorithm. The possibility of obtaining a phase mapping of the surface with such accuracy in this configuration is not obvious because the metasurface is a matrix of nanoelements with the same height of 50 nm, and the phase shift in the reflected optical radiation is created due to third-order gap plasmon resonance. On the obtained optical phase images of metasurfaces, unit (single) cells of the metasurface are reliably resolved owing to a sufficiently high lateral resolution (approximately 450 nm). The results of the characterization of metasurfaces obtained using SWLI are compared with those obtained in a laboratory setup using scanning differential heterodyne microscopy (SDHM). Although the SWLI method demonstrates better lateral resolution compared with the SDHM method, it is less accurate in restoring the phase characteristics of metasurfaces with a phase gradient. Practical significance. The results obtained allow us to conclude that the evaluation of the phase optical characteristics of nanostructured plasmonic metasurfaces by the method of SWLI is possible and requires further experimental and theoretical studies.

Keywords:

white light interferometry, metasurface, plasmon resonance, heterodyne microscopy

Acknowledgements:

The authors are thankful to P.A. Somov (Analytical center of Fiber Optics Research Center of RAS of A.M. Prokhorov Institute of General Physics of RAS) for conducting of the research by electron microscopy and provided images of samples.

OCIS codes: 110.0180, 100.5070, 180.3170, 120.3180

References:

1. Hu J., Bandyopadhyay S., Liu Y., Shao L. A review on metasurface: From principle to smart metadevices // Front. Phys. 2021. V. 8. P. 586087. DOI:10.3389/fphy.2020.586087

2. Wu D., Fang F. Development of surface reconstruction algorithms for optical interferometric measurement // Front. Mech. Eng. 2021. V. 16. № 1. P. 1–31. DOI: 10.1007/s11465-020-0602-6
3. Khadir S., Andren D., Verre R., Song Q., Monneret S., Genevet P., Kall M., Baffou G. Metasurface optical characterization using quadriwave lateral shearing interferometry // ACS Photon. 2021. V. 8. № 2. P. 603–613. DOI: 10.1021/acsphotonics.0c01707
4. Ding F., Yang Y., Deshpande R.A., Bozhevolnyi S.I. A review of gap-surface plasmon metasurfaces: Fundamentals and applications // Nanophotonics. 2018. V. 7. № 6. P. 1129–1156. DOI: 10.1515/nanoph-2017-0125
5. Akhmedzhanov I.M., Deshpande R.A., Baranov D.V., Bozhevolnyi S.I. Characterization of gap-plasmon based metasurfaces using scanning differential heterodyne microscopy // Sci. Rep. 2020. V. 10. P. 13524. DOI: 10.1038/s41598-020-70395-2
6. Gao F., Leach R.K., Petzing J., Coupland J.M. Surface measurement errors using commercial scanning white light interferometers // Meas. Sci. Technol. 2007. V. 19. № 1. P. 015303. DOI: 10.1088/0957-0233/19/1/015303
7. de Groot P., Deck L. Surface profiling by analysis of white-light interferograms in the spatial frequency domain // J. Mod. Opt. 1995. V. 42. № 2. P. 389–401. DOI: 10.1080/09500349514550341
8. de Groot P. Principles of interference microscopy for the measurement of surface topography // Adv. Opt. Photon. 2015. V. 7. № 1. P. 1–65. DOI: 10.1364/AOP.7.000001
9. Leach R. Optical measurements of surface topography. Berlin: Springer, 2011. 323 p. DOI: 10.1007/978-3-642-12012-1
10. Lehmann P., Xie W., Allendorf B., Tereschenko S. Coherence scanning and phase imaging optical interference microscopy at the lateral resolution limit // Opt. Exp. 2018. V. 26. № 6. P. 7376–7389. DOI:10.1364/OE.26.007376
11. Pors A., Albrektsen O., Radko I.P., Bozhevolnyi S.I. Gap plasmon-based metasurfaces for total control of reflected light // Sci. Rep. 2013. V. 3. P. 2155. DOI: 10.1038/srep02155
12. Davidson M., Kaufman K., Mazor I., Cohen F. An application of interference microscopy to integrated circuit inspection and metrology // Proc. SPIE. 1987. V. 0775. P. 233–247. DOI: 10.1117/12.940433
13. Larkin K.G. Efficient nonlinear algorithm for envelope detection in white light interferometry // JOSA A. 1996. V. 13. № 4. P. 832–843. DOI:10.1364/JOSAA.13.000832
14. de Groot P.J. The meaning and measure of vertical resolution in optical surface topography measurement // Appl. Sci. 2017. V. 7. № 1. P. 54. DOI:10.3390/app7010054
15. Baranov D.V., Zolotov E.M. Superresolution processing of the response in scanning differential heterodyne microscopy // Advances in information optics and photonics / eds by Friberg A.T., Dandliker R. Bellingham: SPIE, 2008. P. 229–250. DOI: 10.1117/3.793309.ch12
16. Lehmann P., Tereschenko S., Xie W. Fundamental aspects of resolution and precision in vertical scanning white-light interferometry // Surf. Topogr.: Metrol. Prop. 2016. V. 4. № 2. P. 024004. DOI: 10.1088/2051-672X/4/2/024004