DOI: 10.17586/1023-5086-2022-89-07-37-44
УДК: 535.016
Resistance of a corner cube reflector with a dielectric antireflection coating to the space environment
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ненадович В.Д., Соколов А.Л. Стойкость уголкового отражателя с диэлектрическим просветляющим покрытием к действию факторов космического пространства // Оптический журнал. 2022. Т. 89. № 7. С. 37–44. http://doi.org/10.17586/1023-5086-2022-89-07-37-44
Nenadovich V.D., Sokolov A.L. Resistance of a corner cube reflector with a dielectric antireflection coating to the space environment [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 7. P. 37–44. http://doi.org/10.17586/1023-5086-2022-89-07-37-44
V. D. Nenadovich and A. L. Sokolov, "Resistance of a corner cube reflector with a dielectric antireflection coating to the space environment," Journal of Optical Technology. 89(7), 395-399 (2022). https://doi.org/10.1364/JOT.89.000395
Subject of study. The negative effect of corpuscular radiation of outer space on the optical properties of a corner cube reflector with a multilayer dielectric coating is studied. Aim. The feasibility of applying a bilayer antireflection dielectric coating for radiation with a wavelength of 532 nm on the input face of a corner cube reflector operated in a high-orbit spacecraft is investigated. Method. Electron–proton irradiation simulating the effect of hot magnetospheric plasma on corner cube reflectors with and without antireflection coatings was carried out using a simulation stand. Because the corner cube reflector is made of KU-1 radiation-resistant quartz glass, special attention was devoted to the formation of electrostatic discharges that accompany the irradiation of the samples. Main results. The induced optical density of the coating of the input face of corner reflectors caused by magnetospheric plasma particles increased with the distance from the geometric center of the aperture of the input face to the metal frame. This can be explained by the fact that discharges with the maximum intensity were observed in the vicinity of the frame, resulting in the destruction of the near-surface layers of the irradiated samples. It has been experimentally established that the antireflection effect of a bilayer coating, which comprises HfO2 (thickness of approximately 25 nm) and SiO2 (thickness of approximately 100 nm), leveled with increasing irradiation dose. Practical significance. The results demonstrate that the use of the investigated bilayer antireflection coating is advisable in optical systems of a high-orbit spacecraft with an active lifetime not exceeding 6 years or under conditions of lower dose load.
dielectric coatings, angle reflector, radiation resistance, magnetospheric plasma, retroreflector system, protons, electrons
OCIS codes: 240.0310, 240.6490
References:1. A. L. Sokolov, A. S. Akent’ev, and V. D. Nenadovich, “Space retroreflector arrays,” Svetotekhnika 25(4), 18–23 (2017).
2. A. L. Sokolov, V. V. Murashkin, A. S. Akent’ev, and E. A. Karaseva, “Cube-corner reflectors with interference dielectric coating,” Quantum Electron. 43(9), 795–799 (2013).
3. A Model of the Cosmos, Vol. 1: Physical Conditions in Outer Space, L. S. Novikov, ed. (Izdatel’stvo KDU, Moscow, 2007).
4. A Model of the Cosmos, Vol. 2: Impact of the Space Environment on Spacecraft Materials and Equipment, L. S. Novikov, ed. (Izdatel’stvo KDU, Moscow, 2007).
5. D. C. Ferguson and S. C. Wimberly, “The best GEO daytime spacecraft charging index,” in Proceedings of the 50th AIAA Aerospace Science Meeting (2013).
6. R. Kh. Khasanshin, L. S. Novikov, L. S. Gatsenko, and Ya. B. Volkova, “Electric discharge processes under irradiation of K208 and CMG glasses with electrons with energies ranging from 10 to 40 keV,” Perspekt. Mater. (1), 22–30 (2015).
7. M. Cho, S. Kawakita, and M. Nakamura, “Number of arcs estimated on solar array of a geostationary satellite,” J. Spacecr. Rockets 42(4), 740–748 (2005).
8. H. Masui, K. Toyoda, and M. Cho, “Electrostatic discharge plasma propagation speed on solar panel in simulated geosynchronous environment,” IEEE Trans. Plasma Sci. 36, 2387–2394 (2008).
9. D. C. Ferguson and I. Katz, “The worst case GEO environment and the frequency of arcs in GEO,” IEEE Trans. Plasma Sci. 43(9), 3021–3026 (2015).
10. R. Kh. Khasanshin, L. S. Novikov, and S. B. Korovin, “Effect of residual atmospheric pressure on the development of electrostatic discharges at the surface of protective glasses of solar cells,” J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 10, 1001–1010 (2016).
11. A. Abbas, Y. Serruys, D. Ghaleb, J. M. Delaye, B. Boizot, B. Reynard, and G. Calas, “Evolution of nuclear glass structure under α-irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 166–167, 445–450 (2000).
12. G. F. Zhang, T. S. Wang, K. J. Yang, and L. Chen, “Raman spectra and nano-indentation of Ar-irradiated borosilicate glass,” Nucl. Instrum. Methods Phys. Res., Sect. B 316, 218–221 (2013).
13. R. Kh. Khasanshin and L. S. Novikov, “Formation and destruction of gas-filled bubbles in the near-surface layer of glass under the action of electron-proton plasma,” J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 15, 671–677 (2021).
14. R. Kh. Khasanshin and L. S. Novikov, “The influence of proton irradiation on properties of glass with ITO coating,” Opt. Spectrosc. 127, 888–893 (2019) [Opt. Spektrosk. 127, 821–826 (2019)].
15. D. V. Orlinski, K. Yu. Vukolov, B. A. Levin, and V. T. Gritsyna, “Radiation resistance of quartz glasses,” Vopr. At. Nauki Tekh., Ser.: Fiz. Plazmy (3–4), 82–91 (2002).
16. D. V. Orlinski and K. Yu. Vukolov, “Quartz KU-1 optical density measurements after irradiation in the nuclear reactor IR8,” Plasma Devices Oper. 7, 195–204 (1999).
17. V. In’kov, I. Ivanin, and D. Orlinski, “Time variation of the optical absorption of quartz KU-1 induced by gamma irradiation,” J. Nucl. Mater. 256, 254–257 (1998).
18. D. V. Orlinski and V. Gritsyna, “Radiation resistance investigation of quartz glass KU-1,” Probl. At. Sci. Technol., Ser.: Plasma Phys. (3), 60–63 (2000).
19. V. Gritsyna, T. A. Bazilevskaya, V. Voitsenya, D. V. Orlinski, and Yu. A. Tarabrin, “Accumulation of stable optical centres in silica glasses under pulse beam irradiation,” J. Nucl. Mater. 233–237, 1310–1317 (1996).
20. M. Garcia-Matos, A. Morono, and E. R. Hodgson, “KU-1 quartz glass for remote handling and LIDAR diagnostic optical transmission,” J. Nucl. Mater. 283–287, 890–893 (2000).