ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-07-90-95

УДК: 530.145, 535.12, 681.7, 53.082.5

Security of plug-and-play continuous-variable quantum key distribution

For Russian citation (Opticheskii Zhurnal):

Гончаров Р.К., Кириченко Д.Н., Воронцова И.О., Филипов И.М., Адам Ю.А., Первушин Б.Е., Наседкин Б.А., Самсонов Э.О., Егоров В.И. Доказательство стойкости квантового распределения ключей на непрерывных переменных типа «подключил и работай» // Оптический журнал. 2022. Т. 89. № 7. С. 90–95. http://doi.org/10.17586/1023-5086-2022-89-07-90-95

 

Goncharov R.K., Kirichenko D.N., Vorontsova I.O., Filipov I.M., Adam Yu.A., Pervushin B.E., Nasedkin B.A., Samsonov E.O., Egorov V.I. Security of plug-and-play continuous-variable quantum key distribution [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 7. P. 90–95. http://doi.org/ 10.17586/1023-5086-2022-89-07-90-95

For citation (Journal of Optical Technology):

R. K. Goncharov, D. N. Kirichenko, I. O. Vorontsova, I. M. Filipov, Y. A. Adam, B. E. Pervushin, B. A. Nasedkin, E. O. Samsonov, and V. I. Egorov, "Security of plug-and-play continuous-variable quantum key distribution," Journal of Optical Technology. 89(7), 430-433 (2022). https://doi.org/10.1364/JOT.89.000430

Abstract:

Subject of study. Two-way continuous-variable quantum key distribution schemes are studied. Aim. This study aims to prove the security of the plug-and-play continuous-variable quantum key distribution system in the context of the model of trusted noise from legitimate users. Method. Based on an analog of the well-known implementation in the plug-and-play format, the performance of such a system operating under the GG02 protocol is evaluated. The evaluation is conducted in the presence of collective attacks, considering the finite-key effects. Main results. A secure key that satisfies the composability criteria can be distributed with a channel loss of 5 dB, which is expected to be approximately half that in a one-way scheme. Practical significance. Two-way quantum key distribution schemes are more stable than one-way schemes, and hence, their stability requires detailed consideration. This paper is the first, to our knowledge, to propose considering the security of a two-way implementation of continuous-variable quantum key distribution, considering the trusted equipment noise.

Keywords:

quantum distribution of keys on continuous variables, composibility criterion, "connect and work"

Acknowledgements:

The research is supported by JSC "Russian Railways" (JSC "RZD").

OCIS codes: 270.5565, 270.5568

References:

1. Pirandola S. Limits and security of free-space quantum communications // Phys. Rev. Research. 2021. V. 3. № 1. P. 013279. DOI: 10.1103/PhysRevResearch.3.013279
2. Bennett C.H., Brassard G. Quantum cryptography: Public key distribution and coin tossing // Theoretical Computer Sci. 2014. V. 560. P. 7–11. DOI: j.tcs.2014.05.025
3. Marand C., Townsend P.D. Quantum key distribution over distances as long as 30 km // Opt. Lett. 1995. V. 20. № 16. P. 1695–1697. DOI: 10.1364/OL.20.001695
4. Stucki D., Gisin N., Guinnard O., et al. Quantum key distribution over 67 km with a plug&play system // New J. Phys. 2002. V. 4. № 1. P. 41. DOI: 10.1088/1367-2630/4/1/341
5. Kawamoto Y., Hirano T., Namiki R., et al. "Plug and play" systems for quantum cryptography with continuous variables // Internat. Quantum Electron. Conf., 2005. IEEE, 2005. P. 1612–1614. DOI: 10.1109/IQEC.2005.1561132
6. Valivarthi R., Etcheverry S., Aldama J., et al. Plug-and-play continuous-variable quantum key distribution for metropolitan networks // Opt. Exp. 2020. V. 28. № 10. P. 14547–14559. DOI: 10.1364/OE.391491
7. Zhang Y., Chen Z., Pirandola S., et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber // Phys. Rev. Lett. 2020. V. 125. № 1. P. 010502. DOI: 10.1103/PhysRevLett.125.010502
8. Jouguet P., Kunz-Jacques S., Diamanti E. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution // Phys. Rev. A. 2013. V. 87. № 6. P. 062313. DOI: 10.1103/PhysRevA.87.062313
9. Usenko V.C., Filip R. Trusted noise in continuous-variable quantum key distribution: A threat and a defense // Entropy. 2016. V. 18. № 1. P. 20. DOI:10.3390/e18010020
10. Laudenbach F., Pacher C. Analysis of the trusted-device scenario in continuous-variable quantum key distribution // Advanced Quantum Technol. 2019. V. 2. № 11. P. 1900055. DOI: 10.1002/qute.201900055
11. Laudenbach F., Pacher C., Fung C.H.F., et al. Continuous-variable quantum key distribution with Gaussian modulation — the theory of practical implementations // Advanced Quantum Technol. 2018. V. 1. № 1. P. 1800011. DOI: 10.1002/qute.201800011
12. Goncharov R., Kiselev A.D., Samsonov E., Egorov V. Security proof for continuous-variable quantum key distribution with trusted hardware noise against general attacks // arXiv preprint arXiv:2205.05299.2022.
13. Subacius D., Zavriyev A., Trifonov A. Backscattering limitation for fiber-optic quantum key distribution systems // Appl. Phys. Lett. 2005. V. 86. № 1. P. 011103. DOI: 10.1063/1.1842862
14. Huang D., Huang P., Wang T., et al. Continuous-variable quantum key distribution based on a plug-andplay dual-phase-modulated coherent-states protocol // Phys. Rev. A. 2016. V. 94. № 3. P. 032305. DOI:10.1103/PhysRevA.94.032305
15. Devetak I., Winter A. Distillation of secret key and entanglement from quantum states // Proc. Royal Soc. A: Mathematical, Physical and Eng. Sci. 2005. V. 461. № 2053. P. 207–235. DOI: 10.1098/rspa.2004.1372
16. Pirandola S. Composable security for continuous variable quantum key distribution: Trust levels and practical key rates in wired and wireless networks // Phys. Rev. Research. 2021. V. 3. № 4. P. 043014. DOI:10.1103/PhysRevResearch.3.043014
17. Leverrier A. Composable security proof for continuous-variable quantum key distribution with coherent states // Phys. Rev. Lett. 2015. V. 114. № 7. P. 070501. DOI: 10.1103/PhysRevLett.114.070501
18. Leverrier A., Grosshans F., Grangier P. Finite-size analysis of a continuous-variable quantum key distribution // Phys. Rev. A. 2010. V. 81. № 6. P. 062343. DOI: 10.1103/PhysRevA.81.062343
19. Tomamichel M., Colbeck R., Renner R. A fully quantum asymptotic equipartition property // IEEE Trans. Inform. Theory. 2009. V. 55. № 12. P. 5840–5847. DOI: 10.1109/TIT.2009.2032797