DOI: 10.17586/1023-5086-2022-89-07-90-95
УДК: 530.145, 535.12, 681.7, 53.082.5
Security of plug-and-play continuous-variable quantum key distribution
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Гончаров Р.К., Кириченко Д.Н., Воронцова И.О., Филипов И.М., Адам Ю.А., Первушин Б.Е., Наседкин Б.А., Самсонов Э.О., Егоров В.И. Доказательство стойкости квантового распределения ключей на непрерывных переменных типа «подключил и работай» // Оптический журнал. 2022. Т. 89. № 7. С. 90–95. http://doi.org/10.17586/1023-5086-2022-89-07-90-95
Goncharov R.K., Kirichenko D.N., Vorontsova I.O., Filipov I.M., Adam Yu.A., Pervushin B.E., Nasedkin B.A., Samsonov E.O., Egorov V.I. Security of plug-and-play continuous-variable quantum key distribution [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 7. P. 90–95. http://doi.org/ 10.17586/1023-5086-2022-89-07-90-95
R. K. Goncharov, D. N. Kirichenko, I. O. Vorontsova, I. M. Filipov, Y. A. Adam, B. E. Pervushin, B. A. Nasedkin, E. O. Samsonov, and V. I. Egorov, "Security of plug-and-play continuous-variable quantum key distribution," Journal of Optical Technology. 89(7), 430-433 (2022). https://doi.org/10.1364/JOT.89.000430
Subject of study. Two-way continuous-variable quantum key distribution schemes are studied. Aim. This study aims to prove the security of the plug-and-play continuous-variable quantum key distribution system in the context of the model of trusted noise from legitimate users. Method. Based on an analog of the well-known implementation in the plug-and-play format, the performance of such a system operating under the GG02 protocol is evaluated. The evaluation is conducted in the presence of collective attacks, considering the finite-key effects. Main results. A secure key that satisfies the composability criteria can be distributed with a channel loss of 5 dB, which is expected to be approximately half that in a one-way scheme. Practical significance. Two-way quantum key distribution schemes are more stable than one-way schemes, and hence, their stability requires detailed consideration. This paper is the first, to our knowledge, to propose considering the security of a two-way implementation of continuous-variable quantum key distribution, considering the trusted equipment noise.
quantum distribution of keys on continuous variables, composibility criterion, "connect and work"
Acknowledgements:The research is supported by JSC "Russian Railways" (JSC "RZD").
OCIS codes: 270.5565, 270.5568
References:1. Pirandola S. Limits and security of free-space quantum communications // Phys. Rev. Research. 2021. V. 3. № 1. P. 013279. DOI: 10.1103/PhysRevResearch.3.013279
2. Bennett C.H., Brassard G. Quantum cryptography: Public key distribution and coin tossing // Theoretical Computer Sci. 2014. V. 560. P. 7–11. DOI: j.tcs.2014.05.025
3. Marand C., Townsend P.D. Quantum key distribution over distances as long as 30 km // Opt. Lett. 1995. V. 20. № 16. P. 1695–1697. DOI: 10.1364/OL.20.001695
4. Stucki D., Gisin N., Guinnard O., et al. Quantum key distribution over 67 km with a plug&play system // New J. Phys. 2002. V. 4. № 1. P. 41. DOI: 10.1088/1367-2630/4/1/341
5. Kawamoto Y., Hirano T., Namiki R., et al. "Plug and play" systems for quantum cryptography with continuous variables // Internat. Quantum Electron. Conf., 2005. IEEE, 2005. P. 1612–1614. DOI: 10.1109/IQEC.2005.1561132
6. Valivarthi R., Etcheverry S., Aldama J., et al. Plug-and-play continuous-variable quantum key distribution for metropolitan networks // Opt. Exp. 2020. V. 28. № 10. P. 14547–14559. DOI: 10.1364/OE.391491
7. Zhang Y., Chen Z., Pirandola S., et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber // Phys. Rev. Lett. 2020. V. 125. № 1. P. 010502. DOI: 10.1103/PhysRevLett.125.010502
8. Jouguet P., Kunz-Jacques S., Diamanti E. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution // Phys. Rev. A. 2013. V. 87. № 6. P. 062313. DOI: 10.1103/PhysRevA.87.062313
9. Usenko V.C., Filip R. Trusted noise in continuous-variable quantum key distribution: A threat and a defense // Entropy. 2016. V. 18. № 1. P. 20. DOI:10.3390/e18010020
10. Laudenbach F., Pacher C. Analysis of the trusted-device scenario in continuous-variable quantum key distribution // Advanced Quantum Technol. 2019. V. 2. № 11. P. 1900055. DOI: 10.1002/qute.201900055
11. Laudenbach F., Pacher C., Fung C.H.F., et al. Continuous-variable quantum key distribution with Gaussian modulation — the theory of practical implementations // Advanced Quantum Technol. 2018. V. 1. № 1. P. 1800011. DOI: 10.1002/qute.201800011
12. Goncharov R., Kiselev A.D., Samsonov E., Egorov V. Security proof for continuous-variable quantum key distribution with trusted hardware noise against general attacks // arXiv preprint arXiv:2205.05299.2022.
13. Subacius D., Zavriyev A., Trifonov A. Backscattering limitation for fiber-optic quantum key distribution systems // Appl. Phys. Lett. 2005. V. 86. № 1. P. 011103. DOI: 10.1063/1.1842862
14. Huang D., Huang P., Wang T., et al. Continuous-variable quantum key distribution based on a plug-andplay dual-phase-modulated coherent-states protocol // Phys. Rev. A. 2016. V. 94. № 3. P. 032305. DOI:10.1103/PhysRevA.94.032305
15. Devetak I., Winter A. Distillation of secret key and entanglement from quantum states // Proc. Royal Soc. A: Mathematical, Physical and Eng. Sci. 2005. V. 461. № 2053. P. 207–235. DOI: 10.1098/rspa.2004.1372
16. Pirandola S. Composable security for continuous variable quantum key distribution: Trust levels and practical key rates in wired and wireless networks // Phys. Rev. Research. 2021. V. 3. № 4. P. 043014. DOI:10.1103/PhysRevResearch.3.043014
17. Leverrier A. Composable security proof for continuous-variable quantum key distribution with coherent states // Phys. Rev. Lett. 2015. V. 114. № 7. P. 070501. DOI: 10.1103/PhysRevLett.114.070501
18. Leverrier A., Grosshans F., Grangier P. Finite-size analysis of a continuous-variable quantum key distribution // Phys. Rev. A. 2010. V. 81. № 6. P. 062343. DOI: 10.1103/PhysRevA.81.062343
19. Tomamichel M., Colbeck R., Renner R. A fully quantum asymptotic equipartition property // IEEE Trans. Inform. Theory. 2009. V. 55. № 12. P. 5840–5847. DOI: 10.1109/TIT.2009.2032797