DOI: 10.17586/1023-5086-2022-89-09-20-29
УДК: 535.317
Aberration analysis of decentered lenses for the compensation of vergence–accommodation conflict in virtual reality systems
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Романова Г.Э., Нгуен Н.Ш. Анализ аберраций децентрированных линз для компенсации конфликта конвергенции и аккомодации в системах виртуальной реальности // Оптический журнал. 2022. Т. 89. № 9. С. 20–29. http://doi.org/ 10.17586/1023-5086-2022-89-09-20-29
Romanova G.E., Nguyen N.S. Aberration analysis of decentered lenses for the compensation of vergence–accommodation conflict in virtual reality systems [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 9. P. 20–29. http://doi.org/ 10.17586/1023-5086-2022-89-09-20-29
G. E. Romanova and N. S. Nguyen, "Aberration analysis of decentered lenses for the compensation of vergence–accommodation conflict in virtual reality systems," Journal of Optical Technology. 89(9), 517-523 (2022). https://doi.org/10.1364/JOT.89.000517
virtual reality, conflict of convergence and accommodation, aberrations, decentralized lenses, coma, astigmatism, curvature of image field
OCIS codes: 330.1400, 090.1000, 050.1970
References:1. J. W. Andrew, “How are crosstalk and ghosting defined in the stereoscopic literature?” Proc. SPIE 7863, 78630Z (2011).
2. L. K. Frank and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).
3. J. Kim, W. Kim, S. Ahn, J. Kim, and S. Lee, “Virtual reality sickness predictor: analysis of visual-vestibular conflict and VR contents,” in 10th International Conference on Quality of Multimedia Experience (2018).
4. T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: predicting visual discomfort with stereo displays,” J. Vis. 11(8):11, 1–29 (2011).
5. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3):33, 1–30 (2008).
6. S. Liu, D. Cheng, and H. Hua, “An optical see-through head mounted display with addressable focal planes,” in Proceedings of 7th IEEE/ACM International Symposium on Mixed Augmented Reality (2008), pp. 33–42.
7. A. Hasnain, P.-Y. Laffont, S. B. A. Jalil, K. Buyukburc, P.-Y. Guillemet, S. Wirajaya, L. Khoo, T. Deng, and J. C. Bazin, “Piezo-actuated varifocal head-mounted displays for virtual and augmented reality,” Proc. SPIE 10942, 1094207 (2019).
8. J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes headmounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
9. D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatialmultiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11(3), 031201 (2013).
10. W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using microstructure array,” Chin. Opt. Lett. 12, 060010 (2014).
11. W. Song, Y. Wang, D. Cheng, and Y. Liu, “Design of light field head mounted display,” Proc. SPIE 9293, 92930J (2014).
12. A. Wilson and H. Hua, “High-resolution optical see-through varifocal-plane head-mounted display using freeform Alvarez lenses,” Proc. SPIE 10676, 106761J (2018).
13. W. Cui and L. Gao, “Optical mapping near-eye three-dimensional display with correct focus cues,” Opt. Lett. 42(13), 2475–2478 (2017).
14. N. S. Nguyen and G. E. Romanova, “Overcoming the conflict of convergence and accommodation in virtual and augmented reality systems,” Izv. Vuzov. Priborostr. 64(2), 143–152 (2021).
15. “The dual-element optics of the OSVR HDK headset,” https://www.roadtovr.com/sensics-ceo-yuval-boger-dual-element-optics-osvr-hdk-vr-headset/.
16. T. L. Wong, Z. Yun, G. Ambur, and J. Etter, “Folded optics with birefringent reflective polarizers,” Proc. SPIE 10335, 103350E (2017).
17. L. A. Zapryagaeva and I. S. Sveshnikova, Calculation and Design of Optical Systems (Logos, Moscow, 2000).
18. R. V. Shack, “Aberration theory,” in OPTI 514 Course Notes (College of Optical Sciences, University of Arizona, Tucson).
19. K. P. Thompson, “Aberration fields in tilted and decentered optical systems,” Ph.D. thesis (University of Arizona, Tucson, 1980).
20. N. N. Gubel’, Aberrations of Decentered Optical Systems (Mashinostroenie, Leningrad, 1975).
21. G. G. Slyusarev, Methods for Calculation of Optical Systems (Mashinostroenie, Leningrad, 1969).
22. G. E. Romanova and N. S. Nguyen, “Aberration analysis of a wedge as a compensator element in augmented and virtual reality systems,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. 21(6), 808–816 (2021).
23. K. Bang, Y. Jo, M. Chae, and B. Lee, “LensIet VR: thin, flat and wide-FOV virtual reality display using Fresnel lens and lensIet array,” IEEE Trans. Vis. Comput. Graph. 27(5), 2545–2554 (2021).
24. https://imall.com/product/2.9-inch-2160x2160-Lcd-Screen-Head-Mounted-Display-HMD-Windows-Mixed-Reality-MR-VR-Lcds-Panel-Mipi-Driver-Board-1058-PPI/Home-Improvement-Furniture-Apparel-Accessories-Electronic-Components-Supplies-Phones-
Telecommunications-Mobile-Phone-Parts/aliexpress.com/4001178680657/144-74564500/en.
25. Zemax Optic Studio 19.8 User Manual, October 2019.