ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-09-20-29

УДК: 535.317

Aberration analysis of decentered lenses for the compensation of vergence–accommodation conflict in virtual reality systems

For Russian citation (Opticheskii Zhurnal):

Романова Г.Э., Нгуен Н.Ш. Анализ аберраций децентрированных линз для компенсации конфликта конвергенции и аккомодации в системах виртуальной реальности // Оптический журнал. 2022. Т. 89. № 9. С. 20–29. http://doi.org/ 10.17586/1023-5086-2022-89-09-20-29

 

Romanova G.E., Nguyen N.S. Aberration analysis of decentered lenses for the compensation of vergence–accommodation conflict in virtual reality systems  [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 9. P. 20–29. http://doi.org/ 10.17586/1023-5086-2022-89-09-20-29

For citation (Journal of Optical Technology):

G. E. Romanova and N. S. Nguyen, "Aberration analysis of decentered lenses for the compensation of vergence–accommodation conflict in virtual reality systems," Journal of Optical Technology. 89(9), 517-523 (2022). https://doi.org/10.1364/JOT.89.000517

Abstract:
Subject of study. This study considered optical virtual reality systems in which the use of decentered lenses was proposed to remove or reduce the vergence–accommodation conflict, which results in discomfort or quick fatigue of the user. Aim of study. The study aimed to investigate the possibility of using decentered lenses to compensate the vergence–accommodation conflict in virtual reality systems and to determine the optimal configuration of a two-component optical system. Methods. The required decentering values in the case of a shift of one or both components and aberration characteristics were analyzed. Main results. More exact equations for aberrations introduced into an optical system by decentered lenses upon a relatively large shift of lenses were obtained based on the relations of the third-order aberration theory. The minimum decentering and, consequently, minimum aberrations are obtained in the scheme when both components are decentered. An example of an optical system with decentered lenses designed considering the requirements on size and high image quality is presented. Practical significance. The obtained equations for the aberrations of decentered lenses enable the assessment of the effect of a transverse shift of lenses on image quality in virtual reality systems and can also be applied to analyze decentering aberrations in other schemes. The proposed designs of optical schemes can be utilized in virtual reality systems with reduced vergence–accommodation conflict.
Keywords:

virtual reality, conflict of convergence and accommodation, aberrations, decentralized lenses, coma, astigmatism, curvature of image field

OCIS codes: 330.1400, 090.1000, 050.1970

References:

1. J. W. Andrew, “How are crosstalk and ghosting defined in the stereoscopic literature?” Proc. SPIE 7863, 78630Z (2011).

2. L. K. Frank and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).

3. J. Kim, W. Kim, S. Ahn, J. Kim, and S. Lee, “Virtual reality sickness predictor: analysis of visual-vestibular conflict and VR contents,” in 10th International Conference on Quality of Multimedia Experience (2018).

4. T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: predicting visual discomfort with stereo displays,” J. Vis. 11(8):11, 1–29 (2011).

5. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3):33, 1–30 (2008).

6. S. Liu, D. Cheng, and H. Hua, “An optical see-through head mounted display with addressable focal planes,” in Proceedings of 7th IEEE/ACM International Symposium on Mixed Augmented Reality (2008), pp. 33–42.

7. A. Hasnain, P.-Y. Laffont, S. B. A. Jalil, K. Buyukburc, P.-Y. Guillemet, S. Wirajaya, L. Khoo, T. Deng, and J. C. Bazin, “Piezo-actuated varifocal head-mounted displays for virtual and augmented reality,” Proc. SPIE 10942, 1094207 (2019).

8. J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes headmounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).

9. D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatialmultiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11(3), 031201 (2013).

10. W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using microstructure array,” Chin. Opt. Lett. 12, 060010 (2014).

11. W. Song, Y. Wang, D. Cheng, and Y. Liu, “Design of light field head mounted display,” Proc. SPIE 9293, 92930J (2014).

12. A. Wilson and H. Hua, “High-resolution optical see-through varifocal-plane head-mounted display using freeform Alvarez lenses,” Proc. SPIE 10676, 106761J (2018).

13. W. Cui and L. Gao, “Optical mapping near-eye three-dimensional display with correct focus cues,” Opt. Lett. 42(13), 2475–2478 (2017).

14. N. S. Nguyen and G. E. Romanova, “Overcoming the conflict of convergence and accommodation in virtual and augmented reality systems,” Izv. Vuzov. Priborostr. 64(2), 143–152 (2021).

15. “The dual-element optics of the OSVR HDK headset,” https://www.roadtovr.com/sensics-ceo-yuval-boger-dual-element-optics-osvr-hdk-vr-headset/.

16. T. L. Wong, Z. Yun, G. Ambur, and J. Etter, “Folded optics with birefringent reflective polarizers,” Proc. SPIE 10335, 103350E (2017).

17. L. A. Zapryagaeva and I. S. Sveshnikova, Calculation and Design of Optical Systems (Logos, Moscow, 2000).

18. R. V. Shack, “Aberration theory,” in OPTI 514 Course Notes (College of Optical Sciences, University of Arizona, Tucson).

19. K. P. Thompson, “Aberration fields in tilted and decentered optical systems,” Ph.D. thesis (University of Arizona, Tucson, 1980).

20. N. N. Gubel’, Aberrations of Decentered Optical Systems (Mashinostroenie, Leningrad, 1975).

21. G. G. Slyusarev, Methods for Calculation of Optical Systems (Mashinostroenie, Leningrad, 1969).

22. G. E. Romanova and N. S. Nguyen, “Aberration analysis of a wedge as a compensator element in augmented and virtual reality systems,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. 21(6), 808–816 (2021).

23. K. Bang, Y. Jo, M. Chae, and B. Lee, “LensIet VR: thin, flat and wide-FOV virtual reality display using Fresnel lens and lensIet array,” IEEE Trans. Vis. Comput. Graph. 27(5), 2545–2554 (2021).

24. https://imall.com/product/2.9-inch-2160x2160-Lcd-Screen-Head-Mounted-Display-HMD-Windows-Mixed-Reality-MR-VR-Lcds-Panel-Mipi-Driver-Board-1058-PPI/Home-Improvement-Furniture-Apparel-Accessories-Electronic-Components-Supplies-Phones-

Telecommunications-Mobile-Phone-Parts/aliexpress.com/4001178680657/144-74564500/en.

25. Zemax Optic Studio 19.8 User Manual, October 2019.