DOI: 10.17586/1023-5086-2022-89-09-75-85
УДК: 621.391.64
Position coding as a means of increasing the range of optical communications links
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Тимофеев А.Л., Султанов А.Х., Мешков И.К., Гизатулин А.Р. Увеличение дальности атмосферных оптических линий связи с помощью позиционного кодирования // Оптический журнал. Т. 89. № 9. С. 75–85. http://doi.org/10.17586/1023-5086-2022-89-09-75-85
Timofeev A.L., Sultanov A.Kh, Meshkov I.K., Gizatulin A.R. Position coding as a means of increasing the range of optical communications links [in Russian] // Opticheskii Zhurnal. 2022. V.89. № 9. P. 75-85. http://doi.org/10.17586/1023-5086-2022-89-09-75-85
A. L. Timofeev, A. Kh. Sultanov, I. K. Meshkov, and A. R. Gizatulin, "Position coding as a means of increasing the range of optical communications links," Journal of Optical Technology. 89(9), 555-561 (2022). https://doi.org/10.1364/JOT.89.000555
atmospheric optical communication lines, position-pulse modulation, position noise-resistant coding
Acknowledgements:OCIS codes: 060.2605, 060.4510, 070.2025
References:1. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28-Tb/s (32 × 40 Gb/s) free-space optical WDM transmission system,” IEEE Photon. Technol. Lett. 21(16), 1121–1123 (2009).
2. M. Sahu, K. V. Kiran, and S. K. Das, “FSO link performance analysis with different modulation techniques under atmospheric turbulence,” in Proceedings of the Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India (IEEE, 2018), pp. 619–623.
3. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tutorials 16(8), 2231–2258 (2014).
4. Z. Ghassemlooy and W. O. Popoola, “Terrestrial free-space optical communications,” in Mobile and Wireless Communications Network Layer and Circuit Level Design, S. A. Fares and F. Adachi, eds. (InTech, London, 2010), pp. 355–392.
5. F. Xu, M. A. Khalighi, P. Caussé, and S. Bourennane, “Channel coding and time-diversity for optical wireless links,” Opt. Express 17(2), 872–887 (2009).
6. S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Sel. Areas in Commun. 23(9), 1901–1910 (2005).
7. R. M. Gagliardi and S. Karp, Optical Communication, 2nd ed. (Wiley, New York (1995).
8. F. Xu, M.-A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” J. Opt. Commun. Netw. 1(5), 404–415 (2009).
9. H. Hemmati, Deep Space Optical Communications (Wiley-Interscience, Hoboken, 2006).
10. V. I. Parfenov and D. Yu. Golovanov, “Noise stability of signal reception algorithms with multipulse pulse-position modulation,” Komp. Opt. 42(1), 167–174 (2018).
11. K. P. Peppas, A. C. Boucouvalas, and Z. Ghassemloy, “Performance
of underwater optical wireless communication with multi-pulse pulse-position modulation receivers and spatial diversity,” IET Optoelectron. 11(5), 180–185 (2017).
12. J. Hamkins and B. Moision, “Multipulse pulse-position modulation on discrete memoryless channels,” Interplanetary Network Progress Report 42-161, 2005, https://ipnpr.jpl.nasa.gov/progress_report/42-161/161I.pdf.
13. M. Hassan, S. Shapsough, T. Landolsi, and A. F. Elrefaie, “Error performance study of MPPM optical communication systems with finite extinction ratios,” in 2016 International Conference on Industrial Informatics and Computer Systems (CIICS), Sharjah, United Arab
Emirates (IEEE, 2016).
14. M. K. Simon and V. A. Vilnrotter, “Performance analysis and tradeoffs for dual-pulse PPM on optical communication channels with direct detection,” IEEE Trans. Commun. 52(11), 1969–1979 (2004).
15. Y. Fan and R. J. Green, “Comparison of pulse position modulation and pulse width modulation for application in optical communications,” Opt. Eng. 46(6), 065001 (2007).
16. R. P. Krasnov, “OFDM FSO communications system over a turbulent channel based on interleaved LDPC coding,” Vestn. Voronezh. Gos. Tekh. Univ. 14(4), 71–76 (2018).
17. B. D. Ajewole, K. O. Odeyemi, P. A. Owolawi, and V. M. Srivastava, “Performance of OFDM-FSO communication system with different modulation schemes over gamma-gamma turbulence channel,” J. Commun. 14(6), 490–497 (2019).
18. R. Chowdhury and A. S. J. Choyon, “Design and performance analysis of spectral-efficient hybrid CPDM-CO-OFDM FSO communication system under diverse weather conditions,” J. Opt. Commun. 42(1), 47–68 (2021).
19. Q. Tang, K. Li, X. Liu, and L. Kong, “Performance analysis of spectral efficiently adaptive modulation DFT-spread polar coordinate-based OFDM in hybrid fiber-visible laser light communication system,” in IEEE 20th International Conference on Communication Technology (ICCT) (IEEE, 2020), pp. 594–598.
20. J. G. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, Boston, 2008).
21. M.-A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw. 1(6), 580–593 (2009).
22. J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “Shannon capacities and error-correction codes for optical atmospheric turbulent channels,” J. Opt. Netw. 4(9), 586–601 (2005).
23. N. Cvijetic, S. G. Wilson, and R. Zarubica, “Performance evaluation of a novel converged architecture for digital-video transmission over optical wireless channels,” J. Lightwave Technol. 25(11), 3366–3373 (2007).
24. I. B. Djordjevic, S. Denic, J. Anguita, B. Vasic, and M. A. Neifeld, “LDPC-coded MIMO optical communication over the atmospheric turbulence channel,” J. Lightwave Technol. 26(5), 478–487 (2008).
25. I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “LDPC coded OFDM over the atmospheric turbulence channel,” Opt. Express 15(10), 6336–6350 (2007).
26. M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 5(6), 1229–1233 (2006).
27. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
28. J. H. Shapiro and A. L. Puryear, “Reciprocity-enhanced optical communication through atmospheric turbulence—Part I: Reciprocity proofs and far-field power transfer optimization,” J. Opt. Commun. Netw. 4(12), 947–954 (2012).
29. A. L. Puryear, J. H. Shapiro, and R. R. Parenti, “Reciprocity-enhanced optical communication through atmospheric turbulence—Part II: Communication architectures and performance,” J. Opt. Commun. Netw. 5(8), 888–900 (2013).
30. S. S. Muhammad, T. Javornik, I. Jelov ˇcan, Z. Ghassemlooy, and E. Leitgeb, “Comparison of hard-decision and soft-decision channel coded M-ary PPM performance over free space optical links,” Eur. Trans. Telecommun. 20(8), 746–757 (2009).
31. A. L. Timofeev and A. Kh. Sultanov, “Error-correcting divisible positional codes,” in Proceedings of the Third Scientific Forum on Telecommunications: Theory and Technology (TTT-2019) (KNITUKAI, Kazan’, Russia, 2019), pp. 132–135.
32. A. L. Timofeev and A. K. Sultanov, “Holographic method of errorcorrecting coding,” Proc. SPIE 11146, 365–370 (2019).
33. A. L. Timofeev, A. K. Sultanov, and P. E. Filatov, “Holographic method for storage of digital information,” Proc. SPIE 11516, 14–20 (2020).
34. A. L. Timofeev and A. K. Sultanov, “Building a noise-tolerant code based on a holographic representation of arbitrary digital information,” Komp. Opt. 44(6), 978–984 (2020).
35. H. Kaushal, V. Jain, and S. Kar, “Free-space optical channel models,” in Free Space Optical Communication (Springer, New Delhi, 2017), pp. 41–89.
36. H. Fu, P. Wang, T. Liu, T. Cao, L. Guo, and J. Qin, “Performance analysis of a PPM-FSO communication system with an avalanche photodiode receiver over atmospheric turbulence channels with aperture averaging,” Appl. Opt. 56(23), 6432–6439 (2017).
37. W. Gappmair, S. Hranilovic, and E. Leitgeb, “Performance of PPM on terrestrial FSO links with turbulence and pointing errors,” IEEE Commun. Lett. 14(5), 468–470 (2010).