ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-09-75-85

УДК: 621.391.64

Position coding as a means of increasing the range of optical communications links

For Russian citation (Opticheskii Zhurnal):

Тимофеев А.Л., Султанов А.Х., Мешков И.К., Гизатулин А.Р. Увеличение дальности атмосферных оптических линий связи с помощью позиционного кодирования // Оптический журнал. Т. 89. № 9. С. 75–85. http://doi.org/10.17586/1023-5086-2022-89-09-75-85

 

Timofeev A.L., Sultanov A.Kh, Meshkov I.K., Gizatulin A.R. Position coding as a means of increasing the range of optical communications links [in Russian] // Opticheskii Zhurnal. 2022. V.89. № 9. P. 75-85. http://doi.org/10.17586/1023-5086-2022-89-09-75-85

For citation (Journal of Optical Technology):

A. L. Timofeev, A. Kh. Sultanov, I. K. Meshkov, and A. R. Gizatulin, "Position coding as a means of increasing the range of optical communications links," Journal of Optical Technology. 89(9), 555-561 (2022). https://doi.org/10.1364/JOT.89.000555  

Abstract:
Subject of study. We present research on the range of atmospheric optical communications links as a function of atmospheric conditions, the types of laser beam modulation used, and the type of interference-resistant coding used. Aim. We develop an approach for increasing the range of free-space optical communications links by improving resistance to atmospheric turbulence. Methods. We show that the modulation technique and channel coding must be compatible if optimum results are to be achieved. Pulse position modulation and interference-resistant position coding are one example of such a compatible combination; a holographic code in which a sequence of pulses representing a 1D linear hologram of a single pulse replaces a single pulse in the desired position is one example of an interference-resistant code. In this case, position modulation is still being used, but in the form of multiple pulse position modulation. A holographic code takes advantage of the fact that holograms are divisible, and a fragment of the hologram can be used for recovery of transmitted data (as well as data hidden by noise). The recovery capacity of the holographic code depends on the hologram length—the number of slots per symbol interval. Main results. We show that holographic coding provides higher interference resistance and a lower probability of detector error and provides the same benefit as an increase in transmitter power. Practical significance. The benefit from holographic coding may be used to either increase the communications range or increase the communications channel reliability. Position coding has the advantages that the redundant information required for interference-resistant encoding is created within the symbol interval, does not affect the symbol repetition frequency, and has no effect on the data transmission rate.
Keywords:

atmospheric optical communication lines, position-pulse modulation, position noise-resistant coding

Acknowledgements:
the work was carried out at the expense of a grant from the Russian Scientific Foundation No. 22-29-00041, https://rscf.ru/project/22-29-00041/

OCIS codes: 060.2605, 060.4510, 070.2025

References:

1. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28-Tb/s (32 × 40 Gb/s) free-space optical WDM transmission system,” IEEE Photon. Technol. Lett. 21(16), 1121–1123 (2009).

2. M. Sahu, K. V. Kiran, and S. K. Das, “FSO link performance analysis with different modulation techniques under atmospheric turbulence,” in Proceedings of the Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India (IEEE, 2018), pp. 619–623.

3. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tutorials 16(8), 2231–2258 (2014).

4. Z. Ghassemlooy and W. O. Popoola, “Terrestrial free-space optical communications,” in Mobile and Wireless Communications Network Layer and Circuit Level Design, S. A. Fares and F. Adachi, eds. (InTech, London, 2010), pp. 355–392.

5. F. Xu, M. A. Khalighi, P. Caussé, and S. Bourennane, “Channel coding and time-diversity for optical wireless links,” Opt. Express 17(2), 872–887 (2009).

6. S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Sel. Areas in Commun. 23(9), 1901–1910 (2005).

7. R. M. Gagliardi and S. Karp, Optical Communication, 2nd ed. (Wiley, New York (1995).

8. F. Xu, M.-A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” J. Opt. Commun. Netw. 1(5), 404–415 (2009).

9. H. Hemmati, Deep Space Optical Communications (Wiley-Interscience, Hoboken, 2006).

10. V. I. Parfenov and D. Yu. Golovanov, “Noise stability of signal reception algorithms with multipulse pulse-position modulation,” Komp. Opt. 42(1), 167–174 (2018).

11. K. P. Peppas, A. C. Boucouvalas, and Z. Ghassemloy, “Performance

of underwater optical wireless communication with multi-pulse pulse-position modulation receivers and spatial diversity,” IET Optoelectron. 11(5), 180–185 (2017).

12. J. Hamkins and B. Moision, “Multipulse pulse-position modulation on discrete memoryless channels,” Interplanetary Network Progress Report 42-161, 2005, https://ipnpr.jpl.nasa.gov/progress_report/42-161/161I.pdf.

13. M. Hassan, S. Shapsough, T. Landolsi, and A. F. Elrefaie, “Error performance study of MPPM optical communication systems with finite extinction ratios,” in 2016 International Conference on Industrial Informatics and Computer Systems (CIICS), Sharjah, United Arab

Emirates (IEEE, 2016).

14. M. K. Simon and V. A. Vilnrotter, “Performance analysis and tradeoffs for dual-pulse PPM on optical communication channels with direct detection,” IEEE Trans. Commun. 52(11), 1969–1979 (2004).

15. Y. Fan and R. J. Green, “Comparison of pulse position modulation and pulse width modulation for application in optical communications,” Opt. Eng. 46(6), 065001 (2007).

16. R. P. Krasnov, “OFDM FSO communications system over a turbulent channel based on interleaved LDPC coding,” Vestn. Voronezh. Gos. Tekh. Univ. 14(4), 71–76 (2018).

17. B. D. Ajewole, K. O. Odeyemi, P. A. Owolawi, and V. M. Srivastava, “Performance of OFDM-FSO communication system with different modulation schemes over gamma-gamma turbulence channel,” J. Commun. 14(6), 490–497 (2019).

18. R. Chowdhury and A. S. J. Choyon, “Design and performance analysis of spectral-efficient hybrid CPDM-CO-OFDM FSO communication system under diverse weather conditions,” J. Opt. Commun. 42(1), 47–68 (2021).

19. Q. Tang, K. Li, X. Liu, and L. Kong, “Performance analysis of spectral efficiently adaptive modulation DFT-spread polar coordinate-based OFDM in hybrid fiber-visible laser light communication system,” in IEEE 20th International Conference on Communication Technology (ICCT) (IEEE, 2020), pp. 594–598.

20. J. G. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, Boston, 2008).

21. M.-A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw. 1(6), 580–593 (2009).

22. J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “Shannon capacities and error-correction codes for optical atmospheric turbulent channels,” J. Opt. Netw. 4(9), 586–601 (2005).

23. N. Cvijetic, S. G. Wilson, and R. Zarubica, “Performance evaluation of a novel converged architecture for digital-video transmission over optical wireless channels,” J. Lightwave Technol. 25(11), 3366–3373 (2007).

24. I. B. Djordjevic, S. Denic, J. Anguita, B. Vasic, and M. A. Neifeld, “LDPC-coded MIMO optical communication over the atmospheric turbulence channel,” J. Lightwave Technol. 26(5), 478–487 (2008).

25. I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “LDPC coded OFDM over the atmospheric turbulence channel,” Opt. Express 15(10), 6336–6350 (2007).

26. M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 5(6), 1229–1233 (2006).

27. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).

28. J. H. Shapiro and A. L. Puryear, “Reciprocity-enhanced optical communication through atmospheric turbulence—Part I: Reciprocity proofs and far-field power transfer optimization,” J. Opt. Commun. Netw. 4(12), 947–954 (2012).

29. A. L. Puryear, J. H. Shapiro, and R. R. Parenti, “Reciprocity-enhanced optical communication through atmospheric turbulence—Part II: Communication architectures and performance,” J. Opt. Commun. Netw. 5(8), 888–900 (2013).

30. S. S. Muhammad, T. Javornik, I. Jelov ˇcan, Z. Ghassemlooy, and E. Leitgeb, “Comparison of hard-decision and soft-decision channel coded M-ary PPM performance over free space optical links,” Eur. Trans. Telecommun. 20(8), 746–757 (2009).

31. A. L. Timofeev and A. Kh. Sultanov, “Error-correcting divisible positional codes,” in Proceedings of the Third Scientific Forum on Telecommunications: Theory and Technology (TTT-2019) (KNITUKAI, Kazan’, Russia, 2019), pp. 132–135.

32. A. L. Timofeev and A. K. Sultanov, “Holographic method of errorcorrecting coding,” Proc. SPIE 11146, 365–370 (2019).

33. A. L. Timofeev, A. K. Sultanov, and P. E. Filatov, “Holographic method for storage of digital information,” Proc. SPIE 11516, 14–20 (2020).

34. A. L. Timofeev and A. K. Sultanov, “Building a noise-tolerant code based on a holographic representation of arbitrary digital information,” Komp. Opt. 44(6), 978–984 (2020).

35. H. Kaushal, V. Jain, and S. Kar, “Free-space optical channel models,” in Free Space Optical Communication (Springer, New Delhi, 2017), pp. 41–89.

36. H. Fu, P. Wang, T. Liu, T. Cao, L. Guo, and J. Qin, “Performance analysis of a PPM-FSO communication system with an avalanche photodiode receiver over atmospheric turbulence channels with aperture averaging,” Appl. Opt. 56(23), 6432–6439 (2017).

37. W. Gappmair, S. Hranilovic, and E. Leitgeb, “Performance of PPM on terrestrial FSO links with turbulence and pointing errors,” IEEE Commun. Lett. 14(5), 468–470 (2010).