ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-01-03-11

УДК: 535.015

Analysis of intensity distribution in focused laser beam longitudinal section using Zemax programming language

For Russian citation (Opticheskii Zhurnal):

Гулина Ю.С., Пахольчук П.П. Анализ распределения интенсивности излучения в продольном сечении сфокусированного лазерного пучка с использованием языка программирования Zemax // Оптический журнал. 2023. Т. 90. № 1. С. 3–11. http://doi.org/10.17586/1023-5086-2023-90-01-03-11

 

Gulina Yu.S., Pakholchuk P.P. Analysis of intensity distribution in focused laser beam longitudinal section using Zemax programming language [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 1. P. 3–11. http://doi.org/10.17586/1023-5086-2023-90-01-03-11

For citation (Journal of Optical Technology):

Yu. S. Gulina and P. P. Pakholchuk, "Analysis of the intensity distribution in the longitudinal section of a focused laser beam using the Zemax programming language," Journal of Optical Technology. 90(1), 1-5 (2023). https://doi.org/10.1364/JOT.90.000001

Abstract:

Subject of study. Computer simulation of the propagation of laser radiation using the ZEMAX program. Aim of study. Development of a macro written in the Zemax programming language, designed to obtain the intensity distribution in the longitudinal section of a focused laser beam. Method. The developed macro uses ZEMAX functions based on integral transformations, which make it possible to obtain the results of modeling the processes of radiation propagation through optical systems. Main results. The macro written in the Zemax programming language has been developed for analyzing the intensity distribution in the longitudinal section of a laser beam,. The presented macro is used to analyze the propagation of a laser beam, which is affected by aberrational distortions of various types. The results of the macro operation and their analysis are given. Practical significance. The proposed macro allows you to expand the standard capabilities of ZEMAX and can be useful in analyzing the process of laser radiation propagation. The presented results of the macro show the possibility of its application to analyze the effect of various aberrational distortions on the parameters of laser beam focusing in the volume of a transparent material subjected to laser processing. Therefore, a macro can be useful for controlling the spatial distribution of intensity in a focused laser beam with high accuracy in order to ensure maximum processing efficiency of the material being modified.

Acknowledgment: the work was supported by the Russian Science Foundation grant № 21­79­30063.

Keywords:

laser beam, aberration distortions, Zemax programming language, spherical aberration, focusing

OCIS codes: 140.3295, 220.1010

References:

1. Liu H., Lin Z., Lin Z., Ji L., Hong M. Self-organized periodic microholes array formation on aluminum surface via femtosecond laser ablation induced incubation effect // Adv. Funct. Mater. 2019. V. 29. № 42. Р. 1903576. https://doi.org/10.1002/adfm.201903576

2. Li X., Jiang Yue, Jiang Zh., Li Yu., Wen C., Zhang D., Lian J., Zhang Zh. Improvement of corrosion resistance of H59 brass through fabricating superhydrophobic surface using laser ablation and heating treatment // Corrosion Sci. 2021. V. 180. Р. 109186. https://doi.org/10.1016/j.corsci.2020.109186

3. Feizi B., Jaleh B., Kakuee O., Fattah-alhosseini A. Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance // Appl. Surface Sci. 2019. V. 478. P. 623–635. https://doi.org/10.1016/j.apsusc.2019.01.259

4. Jia Y.C., Wang S.X., Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application // Opto-Electron. Adv. 2020. V. 3. № 10. Р. 190042. https://doi.org/10.29026/oea.2020.190042

5. Sun X., Sun Sh., Romero C., Vázquez de Aldana J.R., Liu F., Jia Yu., Chen F. Femtosecond laser direct writing of depressed cladding waveguides in Nd:YAG with “ear-like” structures: Fabrication and laser generation // Opt. Exp. 2021. V. 29. № 3. P. 4296–4307. https://doi.org/10.1364/OE.417815

6. Wang C.-Yu., Gao J., Jin X.-M. On-chip rotated polarization directional coupler fabricated by femtosecond laser direct writing // Opt. Lett. 2019. V. 44. № 1. P. 102–105. https://doi.org/10.1364/OL.44.000102

7. Danilov P.A., Kudryashov S.I., Levchenko A.O., Oleynichuk E.A., Kovalchuk O.E. Laser-induced luminescent centers in diamond: Influence of exposure and duration of short laser pulses [in Russian] // Optics and spectroscopy. 2022. V. 130. № 4. P. 488–492. https://doi.org/10.21883/OS.2022.04.52260.50-21

8. Schaffer C.B., Brodeur A., Garcia J.F., Mazur E. Icromachining bulk glass by use of femtosecond laser pulses with nanojoule energy // Opt. Lett. 2001. V. 26. № 2. P. 93–95. https://doi.org/10.1364/OL.26.000093

9. Kachurin Yu.Yu., Karateeva A.A. Optimization of afocal system design using the Zemax macro language // J. Opt. Technol. 2019. V. 86. № 1. P. 39–41. https://doi.org//10.1364/JOT.86.000039

10. Liu L., Engel Th., Flury M. Simulation and optimization of faceted structure for illumination // Proc. SPIE. 2016. V. 9889. https://doi.org/10.1117/12.2227200

11. Gao Y., Ana Zh., Wanga J., Zhaob W., Songa F. Automatic optimization design of Gaussian beam shaping system by using // Optik. 2011. V. 122. P. 2176–2180. https://doi.org/10.1016/j.ijleo.2011.02.006

12. Kachurin Yu.Yu., Kryukov A.V., Kananykhin O.A. Macro usage for analyzing of a telescopic system aberrations in ZEMAX // J. Phys.: Conf. Ser. 2021. V. 1745. https://doi.org/10.1088/1742-6596/1745/1/012026

13. Couairon A., Mysyrowicz A. Femtosecond filamentation in transparent media // Phys. Reports. 2007. V. 441. P. 47–189. https://doi.org/10.1016/j.physrep.2006.12.005

14. Gulina Yu.S., Kudryashov S.I., Smirnov N.A., Kuzmin E.V. High-NA focusing of ultrashort laser pulses in bulk of ZnSe [in Russian] // Optics and spectroscopy. 2022. V. 130. № 4. P. 493–498. https://doi.org/10.21883/OS.2022.04.52261.45-21

15. Sun Q., Jiang H., Liu Yi, Zhou Y., Yang H., Gong Q. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica // J. Opt. A. Pure and Appl. Opt. 2005. V. 7. P. 655–659. https://doi.org/10.1088/1464-4258/7/11/006

16. Sun B., Salter P.S., Booth M.J. Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses // JOSA A. 2014. V. 31. № 4. P. 765–772. https://doi.org/10.1364/JOSAA.31.000765

17. ZEMAX 13. Optical Design Program. User’s Manual. August 19, 2014. 879 p.