DOI: 10.17586/1023-5086-2023-90-01-49-59
УДК: 535.4
Super-resolution microscopy based on denoised conventional raw images with wide spectrum denoising
Full text on elibrary.ru
Publication in Journal of Optical Technology
Cheng T. Super-resolution microscopy based on denoised conventional raw images with wide spectrum denoising (Микроскопия высокого разрешения на основе необработанных изображений с шумоподавлением в широкой полосе частот) [на англ. яз.] // Оптический журнал. 2023. Т. 90. № 1. С. 49–59. http://doi.org/10.17586/1023-5086-2023-90-01-49-59
Cheng T. Super-resolution microscopy based on denoised conventional raw images with wide spectrum denoising (Микроскопия высокого разрешения на основе необработанных изображений с шумоподавлением в широкой полосе частот) [in English] // Opticheskii Zhurnal. 2023. V. 90. № 1. P. 49–59. http://doi.org/10.17586/1023-5086-2023-90-01-49-59
Tao Cheng, "Super-resolution microscopy based on denoised conventional raw images with wide spectrum denoising," Journal of Optical Technology. 90(1), 26-32 (2023). https://doi.org/10.1364/JOT.90.000026
Subject of study is a scheme of screening better super-resolution reconstruction based on denoising the conventional raw image with wide spectrum denoising. Purpose of the work. Improving the reconstruction effect of ultra-high-resolution images, for this, reconstruction with noise reduction and compression of ordinary raw images and high-resolution images has been investigated. Method. The binned high resolution raw image is the conventional raw image. Conventional raw images and high resolution raw images were denoised with wide spectrum denoising respectively. The conventional raw images and high resolution raw images before and after denoising are reconstructed by compressed sensing. Main Results. The denoising ability of wide spectrum denoising based on high-resolution raw images is very stable and does not change with molecular density. The signal to noise ratios improves by approximately 8 dB. The denoising ability of wide spectrum denoising based on conventional raw images is not good. The signal to noise ratios of conventional raw images is 6 dB higher than that of high resolution raw images. The signal to noise ratios of denoised high resolution and conventional raw images are almost the same. Compressed sensing reconstruction of the denoised conventional raw images is inferior to that of denoised high-resolution raw images, however, is better than that of high-resolution and conventional raw images. Practical significance. In the conventional single-molecule localizations and super-resolution microscopy, the pixel size of a raw image is about equal to the standard deviation of the point spread function. Wide spectrum denoising can improve the conventional raw image denoising and reconstruction. However, better super-resolution microscopy can be achieved based on wide spectrum denoising and high-resolution raw images. Super-resolution microscopy of high-resolution raw images will become a new research point.
Acknowledgment: the study was funded by the Natural Science Foundation of Guangxi Province (2022GXNSFAA035593) and National Natural Science Foundation of China (81660296, 41461082).
super-resolution microscopy, pixel size, standard deviation, point spread function, compressed sensing
OCIS codes: 170.2520, 100.6640, 050.1960
References:- Khater M., Nabi L.R., Hamarneh G. A review of superresolution singlemolecule localization microscopy cluster analysis and quantification methods // Patterns. 2020. V. 1. № 3. P. 1–23. https://doi.org/10.1016/j.patter.2020.100038
- Lelek M., Gyparaki M.T., Beliu G., Schueder F., Griffié J., Manley S., Jungmann R., Sauer M., Lakadamyali M., Zimmer C. Singlemolecule localization microscopy // Nat. Rev. Methods Primers. 2012. V. 1. № 39. P. 1–27. https://doi.org/10.1038/s4358602100038 x
- Zhu L., Zhang W., Elnatan D., Huang B. Faster STORM using compressed sensing // Nat. Methods. 2012. V. 9. № 7. P. 721–723. https://doi.org/10.1038/nmeth.1978
- Cheng T., Chen D.N., Yu B., Niu H.B. Reconstruction of superresolution STORM images using compressed sensing based on lowresolution raw images and interpolation // Biomed. Opt. Exp. 2017. V. 8. № 5. P. 2445–2457. https://doi.org/10.1364/BOE.8.002445
- Valli J., GarciaBurgos A., Rooney L.M., de Melo e Oliveira B.V., Duncan R.R., Rickman C. Seeing beyond the limit: A guide to choosing the right superresolution microscopy technique // J. Biol. Chem. 2021. V. 297. № 1. P. 1–13. https://doi.org/10.1016/j.jbc.2021.100791
- Nizamudeena Z., Markusb R., Lodgec R., Parmenterd C., Platte M., Chakrabartif L., Sottilea V. Rapid and accurate analysis of stem cellderived extracellular vesicles with super resolution microscopy and live imaging // BBA – Mol. Cell. Res. 2018. V. 1865. № 12. P. 1891–1900. https://doi.org/10.1016/j.bbamcr.2018.09.008
- Achimovich A.M., Ai H., Gahlmann A. Enabling technologies in superresolution fluorescence microscopy: reporters, labeling, and methods of measurement // Curr. Opin. Struct. Biol. 2019. V. 58. № 10. P. 224–232. https://doi.org/10.1016/j.sbi.2019.05.001
- Thompson R.E., Larson D.R., Webb W.W. Precise nanometer localization analysis for individual fluorescent probes // Biophys. J. 2002. V. 82. № 5. P. 2775–2783. https://doi.org/10.1016/S00063495(02)75618X
- Cheezum M.K., Walker W.F., Guilford W.H. Quantitative comparison of algorithms for tracking single fluorescent particles // Biophys. J. 2001. V. 81. № 5. P. 2378–2388. https://doi.org/10.1016/S00063495(01)758845
- Henriques R., Lelek M., Fornasiero E.F., Valtorta F., Zimmer C., Mhlanga M.M. QuickPALM: 3D realtime photoactivation nanoscopy image processing in ImageJ // Nat. Methods. 2010. V. 7. № 5. P. 339–340. https://doi.org/10.1038/nmeth0510339
- Cox S., Rosten E., Monypenny J., JovanovicTalisman T., Burnette D.T., LippincottSchwartz J., Jones G.E., Heintzmann R. Bayesian localization microscopy reveals nanoscal`e podosome dynamics // Nat. Methods. 2011. V. 9. № 2. P. 195–200. https://doi.org/10.1038/NMETH.1812
- Burnettea D.T., Senguptaa P., Daib Y., LippincottSchwartza J., Kacharb B. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules // PNAS. 2011. V. 108. № 52. P. 21081–21086. https://doi.org/10.1073/pnas.1117430109
- Calisesi G., Ghezzi A., Ancora D., D'Andrea C., Valentini G., Farina A., Bassi A. Compressed sensing in fluorescence microscopy // Prog. Biophys. Mol. Bio. 2021. V. 168. № 1. P. 66–80. https://doi.org/10.1016/j.pbiomolbio.2021.06.004
- Arjoune Y., Kaabouch N., Ghazi H.E., Tamtaoui A. A performance comparison of measurement matrices in compressive sensing // Int. J. Commun. Syst. 2018. V. 31. № 10. P. 1–18. https://doi.org/10.1002/dac.3576
- Holden S.J., Uphoff S., Kapanidis A.N. DAOSTORM: An algorithm for highdensity superresolution microscopy // Nat. Methods. 2011. V. 8. № 4. P. 279–280. https://doi.org/10.1038/nmeth0411279
- Min J., Vonesch C., Carlini L., KirshnerH., et al. FALCON: Fast and unbiased reconstruction of highdensity superresolution microscopy data // Sci. Reports. 2014. V. 4. № 4. P. 1–9. https://doi.org/10.1038/srep04577
- Li Y., Mund M., Hoess P., Deschamps J., et al. Realtime 3D singlemolecule localization using experimental point spread functions // Nat. Methods. 2018. V. 15. № 4. P. 367–369. https://doi.org/10.1038/nmeth.4661
- Cheng T., Chen D.N., and Li H. Wide spectrum denoising (WSD) for superresolution microscopy imaging using compressed sensing and a highresolution camera // J. Phys.: Conf. Ser. (2020 Internat. Conf. Computer Vision and Data Mining) 2020. V. 1651. № 1. P. 1–13. https://doi.org/10.1088/17426596/1651/1/012177
- Cheng T. Wide spectrum denoising method for microscopic images // US Patent 16845110. July 30, 2020.
- Beier H.T., Ibey B.L. Experimental comparison of the highspeed imaging performance of an EMCCD and sCMOS camera in a dynamic livecell imaging test case // PLOS ONE. 2014. V. 9. № 1. P. 1–6. https://doi.org/10.1371/journal.pone.0084614
- Sage D., Kirshner Н., Pengo Т., Stuurman N.,et al. Quantitative evaluation of software packages for singlemolecule localization microscopy // Nat. Methods. 2014. V. 12. № 8. P. 717–724. https://doi.org/10.1038/nmeth.3442
- Roa C., Le V.N.D., Mahendroo M., Saytashev I., RamellaRoman J.C. Autodetection of cervical collagen and elastin in Mueller matrix polarimetry microscopic images using KNN and semantic segmentation classification // Biomed. Opt. Exp. 2021. V. 12. № 4. P. 2236–2249. https://doi.org/10.1364/BOE.420079