ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-01-76-83

УДК: 535

Fusion splicing of hollow-core to standard single-mode fibers using a gradient-index bridge fiber

For Russian citation (Opticheskii Zhurnal):

Zhang Z., Li R., Wang C., Zhou M., Liu Y., Pang Y. Fusion splicing of hollow-core to standard single-mode fibers using a gradient-index bridge fiber (Соединение волокна с полой сердцевиной со стандартным одномодовым волокном методом плавления при использовании промежуточного волокна с градиентом показателя преломления) [на англ. яз.] // Оптический журнал. 2023. Т. 90. № 1. С. 76–83. http://doi.org/10.17586/1023-5086-2023-90-01-76-83

 

Zhang Z., Li R., Wang C., Zhou M., Liu Y., Pang Y. Fusion splicing of hollow-core to standard single-mode fibers using a gradient-index bridge fiber (Соединение волокна с полой сердцевиной со стандартным одномодовым волокном методом плавления при использовании проме-жуточного волокна с градиентом показателя преломления) [in English] // Opticheskii Zhurnal. 2023. V. 90. № 1. P. 76–83. http://doi.org/10.17586/1023-5086-2023-90-01-76-83

For citation (Journal of Optical Technology):

Zhe Zhang, Renpu Li, Chaoyong Wang, Min Zhou, Yu Liu, and Yu Pang, "Fusion splicing of hollow-core to standard single-mode fibers using a gradient-index bridge fiber," Journal of Optical Technology. 90(1), 42-45 (2023). https://doi.org/10.1364/JOT.90.000042

Abstract:

High-performance interconnection between hollow-core fiber and conventional solid-core fiber is of great significance for a lot of promising applications of hollow-core fibers. The current problems for high-performance hollow-core fiber/solid-core fiber interconnection mainly involve mode field mismatch of the two fibers and the complex splicing process. Subject of study. Fusion splicing of anti-resonant hollow core fiber with low loss (0.52 dB) and conventional single mode fiber using a convenient graded index bridge fiber. Purpose of the work. Eliminate the mode field diameter mismatch between anti-resonant hollow core fiber and single mode fiber, and simplify the mode field diameter adaptation method and process. Method. We employ a convenient graded index bridge fiber approach, where a gradient index fiber is firstly spliced with the single mode fiber, and the modes interference within the graded index bridge fiber causes periodic enlargement and shrinkage of the mode field diameter. By precious cutting of the graded index bridge fiber, the mode field diameter can be well controlled and made approximately equal to the mode field diameter of the anti-resonant hollow core fiber. After mode field diameter adaptation, an optimized arc discharge fusion splicing procedure is applied for the anti-resonant hollow core fiber/single mode fiber fusion splicing. Main result. A fusion splicing loss of about 0.52 dB is achieved, which involves near 0.42 dB mode field diameter-mismatch-induced loss and about 0.1 dB fusion splicing loss that caused by the deformation of the anti-resonant hollow core fiber. Practical significance. The developed approach is convenient and cost-effective, which can benefit a lot of applications of anti-resonant hollow core fibers in future telecommunications, fiber gas lasers as well as fiber-optic sensing.

 

Acknowledgement: this work is supported by the China Postdoctoral Science Foundation (2020M683184) and Guangdong Basic and Applied Basic Research Foundation (32221295).

Keywords:

anti-resonant hollow-core fiber, fusion splicing, gradient-index bridge fiber, mode field mismatch, low loss

OCIS codes: 060.2310, 060.4080, 230.0230, 060.0060, 220.0220

References:
  1. Habib M.S., Antonio­Lopez J.E., Markos C., Schülzgen A., Correa R.A. Single­mode, low loss hollow­core anti­resonant fiber designs // Opt. Exp. 2019. V. 27. № 4. P. 3824–3836. https://doi.org/10.1364/OE.27.003824
  2. Jasion G.T., Sakr H., Hayes J.R., Sandoghchi S.R., Hooper L., Fokoua E.N., Saljoghei A., Mulvad H.C., Alonso M., Taranta A., Bradley T.D., Davidson I.A., Chen Y., Richardson D.J., Poletti F. 0.174 dB/km Hollow core double nested antiresonant nodeless fiber (DNANF) // Optical Fiber Commun. Conf. (OFC). San Diego, California, United States. Mar. 6–10, 2022. P. Th4C.7. https://doi.org/10.1364/OFC.2022.Th4C.7
  3. Sakr H., Bradley T.D., Jasion G.T., Fokoua E.N., Sandoghchi S.R., Davidson I.A., Taranta A., Guerra G., Shere W., Chen Y., Hayes J.R., Richardson D.J., Poletti F. Hollow core nanfs with five nested tubes and record low loss at 850, 1060, 1300 and 1625 nm // Optical Fiber Commun. Conf. (OFC). San Diego, California, United States. Jun. 6–11, 2021. P. F3A.4. https://doi.org/10.1364/OFC.2021.F3A.4
  4. Couny F., Benabid F., Roberts P.J., Light P.S., Raymer M.G. Generation and photonic guidance of multi­octave optical­frequency combs // Science. 2007. V. 318. № 5853. P. 1118–1121. https://doi.org/10.1126/science.1149091.
  5. Poletti F. Nested antiresonant nodeless hollow core fiber // Opt. Exp. 2014. V. 22. № 20. P. 23807–23828. https://doi.org/10.1364/OE.22.023807
  6. Debord B., Amsanpally A., Chafer M., Baz A., Maurel M., Blondy J.M., Hugonnot E., Scol F., Vincetti L., Gérôme F., Benabid F. Ultralow transmission loss in inhibited­coupling guiding hollow fibers // Optica. 2017. V. 4. № 2. P. 209–217. https://doi.org/10.1364/OPTICA.4.000209
  7. Sakr H., Hong Y., Bradley T.D., Jasion G.T., Hayes J.R., Kim H., Davidson I.A., Numkam Fokoua E., Chen Y., Bottrill K.R.H., Taengnoi N., Wheeler N.V., Petropoulos P., Richardson D.J., Poletti F. Interband short reach data transmission in ultrawide bandwidth hollow core fiber // J. Lightwave Technol. 2020. V. 38. № 1. P. 159–165. https://doi.org/10.1109/JLT.2019.2943178
  8. Ding W., Wang Y.Y., Gao S.F., Wang M.L., Wang P. Recent progress in low­loss hollow­core antiresonant fibers and their applications // IEEE J. Sel. Top. Quantum Electron. 2020. V. 6. № 4. P. 4400312­1–12. https://doi.org/10.1109/JSTQE.2019.2957445
  9. Wang Z.F., Belardi W., Yu F., Wadsworth W.J., Knight J.C. Efficient diode­pumped mid­infrared emission from acetylene­filled hollowcore fiber // Opt. Exp. 2014. V. 22. № 18. P. 21872–21878. https://doi.org/10.1364/OE.22.021872
  10. Sollapur R., Kartashov D., Zürch M., Hoffmann A., Grigorova T., Sauer G., Hartung A., Schwuchow A., Bierlich J., Kobelke J., Chemnitz M., Schmidt M.A., Spielmann C. Resonance­enhanced multi­octave supercontinuum generation in antiresonant hollow­core fibers // Light Sci. Appl. 2017. V. 6. № 1. P. e17124­1–7. https://doi.org/10.1038/lsa.2017.124
  11. Habib M.S., Markos C., Antonio­Lopez J.E., Amezcua­Correa R. Extreme UV light generation through dispersive wave trapping in a tapered gas­filled hollow fiber // IEEE Photonics Technol. Lett. 2019. V. 31. № 10. P. 795–798. https://doi.org/10.1109/LPT.2019.2908953
  12. Wang Y.Z., Dasa M.K., Adamu A.I., Antonio­Lopez J.E., Selim Habib M., Amezcua­Correa R., Bang O., Markos C. High pulse energy and quantum efficiency mid­infrared gas Raman fiber laser targeting CO2 absorption at 4.2 µm // Opt. Lett. 2020. V. 45. № 7. P. 1938–1941. https://doi.org/10.1364/OL.389613
  13. Zhang Z., Liao C.R., Tang J., Wang Y., Bai Z.Y., Li Z.Y., Guo K.K., Deng M., Shao L.Q., Wang Y.P. Hollow­core­fiber­based interferometer for high temperature measurements // IEEE Photon. J. 2017. V. 9. № 2. P. 1–9. https://doi.org/10.1109/JPHOT.2017.2671437
  14. Zhang Z., He J., Dong Q., Bai Z.Y., Liao C.R., Wang Y., Liu S., Guo K.K., Wang Y.P. Diaphragm­free gas­pressure sensor probe based on hollow­core photonic bandgap fiber // Opt. Lett. 2018. V. 43. № 13. P. 3017–3020. https://doi.org/10.1364/OL.43.003017
  15. Zhao P.C., Zhao Y., Bao H.H., Ho H.L., Jin W., Fan S.C., Gao S.F., Wang Y.Y., Wang P. Mode­phase­difference photothermal spectroscopy for gas detection with an anti­resonant hollow­core optical fiber // Nat. Commun. 2020. V. 11. № 1. P. 847­1–8. https://doi.org/10.1038/s41467­020­14707­0
  16. Jaworski P., Krzempek K., Dudzik G., Sazio P.J., Belardi W. Nitrous oxide detection at 5.26 µm with a compound glass antiresonant hollow­core optical fiber // Opt. Lett. 2020. V. 45. № 6. P. 1326–1329. https://doi.org/10.1364/AO.99.099999
  17. Hansen T.P., Broeng J., Jakobsen C., Vienne G., Simonsen H.R., Nielsen M.D., Skovgaard P.M.W., Folkenberg J.R., Bjarklev A. Air­guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling // J. Lightwave Technol. 2004. V. 22. № 1. P. 11–15. https://doi.org/10.1109/JLT.2003.822833
  18. Benabid F., Couny F., Knight J.C., Birks T.A., Russell P.S.J. Compact, stable and efficient all­fiber gas cells using hollow­core photonic crystal fibers // Nature. 2005. V. 434. № 7032. P. 488–491. https://doi.org/10.1038/nature03349
  19. Thapa R., Knabe K., Corwin K.L., Washburn B.R. Arc fusion splicing of hollow­core photonic bandgap fibers for gas­filled fiber cells // Opt. Exp. 2006. V. 14. № 21. P. 9576–9583. https://doi.org/ 10.1364/OE.14.009576
  20. Xiao L.M., Demokan M.S., Jin W., Wang Y.P., Zhao C.L. Fusion splicing photonic crystal fibers and conventional single­mode fibers: Microhole collapse effect // J. Lightwave Technol. 2007. V. 25. № 11. P. 3563–3574. https://doi.org/10.1109/JLT.2007.907787
  21. Gao S.F., Wang Y.Y., Tian C.P., Wang P. Splice loss optimization of a photonic bandgap fiber via a high V­number fiber // IEEE Photonics Technol. Lett. 2014. V. 26. № 21. P. 2134–2137. https://doi.org/10.1109/LPT.2014.2349519
  22. Jin W., Xuan H.F., Ho H.L. Sensing with hollow­core photonic bandgap fibers // Meas. Sci. Technol. 2010. V. 21. № 9. P. 094014­1–12. https://doi.org/10.1088/0957­0233/21/9/094014
  23. Komanec M., Suslov D., Zvánovec S., Chen Y., Bradley T., Sandoghchi S.R., Numkam Fokoua E.R., Jasion G.T., Petrovich M.N., Poletti F., Richardson D.J., Slavík R. Low­loss and low­back­reflection hollow­core to standard fiber interconnection // IEEE Photonics Technol. Lett. 2019. V. 31. № 10. P. 723–726. https://doi.org/10.1109/LPT.2019.2902635
  24. Suslov D., Komanec M., Numkam Fokoua E.R., Dousek D., Zhong A.L., Zvánovec S., Bradley T.D., Poletti F., Richardson D.J., Slavík R. Low loss and high­performance interconnection between standard single mode fiber and antiresonant hollow core fiber // Sci. Rep. 2021. V. 11. № 1. P. 8799­1–9. https://doi.org/10.1038/s41598­021­88065­2
  25. Yu R.W., Wang C.Y., Benabid F., Chiang K.S., Xiao L.M. Robust mode matching between structurally dissimilar optical fiber waveguides // ACS Photonics. 2021. V. 8. № 3. P. 857–863. https://doi.org/10.1021/acsphotonics.0c01859
  26. Wang C.Y., Yu R.W., Debord B., Gérôme F., Benabid F., Chiang K.S., Xiao L.M. Ultralow­loss fusion splicing between negative curvature hollow­core fibers and conventional SMFs with a reverse­tapering method // Opt. Exp. 2021. V. 29. № 14. P. 22470–22478. https://doi.org/10.1364/OE.432147
  27. Hofmann P., Mafi A., Jollive C.T., Tiess T., Peyghambarian N., Schülzgen A. Detailed investigation of mode­field adapters utilizing multimode­interference in graded index fibers // J. Lightwave Technol. 2012. V. 30. № 14. P. 2289–2297. https://doi.org/10.1109/JLT.2012.2196406
  28. Zhang Z., He J., Du B., Zhang F.C., Guo K.K., Wang Y.P. Measurement of high pressure and high temperature using a dual­cavity Fabry–Perot interferometer created in cascade hollow­core fibers // Opt. Lett. 2018. V. 43. № 24. P. 6009–6012. https://doi.org/10.1364/OL.43.006009
  29. Zhang Z., He J., Du B., Guo K.K., Wang Y.P. Highly sensitive gas refractive index sensor based on hollow­core photonic bandgap fiber // Opt. Exp. 2019. V. 27. № 21. P. 29649–29658. https://doi.org/10.1364/OE.27.029649