DOI: 10.17586/1023-5086-2023-90-01-76-83
УДК: 535
Fusion splicing of hollow-core to standard single-mode fibers using a gradient-index bridge fiber
Full text on elibrary.ru
Publication in Journal of Optical Technology
Zhang Z., Li R., Wang C., Zhou M., Liu Y., Pang Y. Fusion splicing of hollow-core to standard single-mode fibers using a gradient-index bridge fiber (Соединение волокна с полой сердцевиной со стандартным одномодовым волокном методом плавления при использовании промежуточного волокна с градиентом показателя преломления) [на англ. яз.] // Оптический журнал. 2023. Т. 90. № 1. С. 76–83. http://doi.org/10.17586/1023-5086-2023-90-01-76-83
Zhang Z., Li R., Wang C., Zhou M., Liu Y., Pang Y. Fusion splicing of hollow-core to standard single-mode fibers using a gradient-index bridge fiber (Соединение волокна с полой сердцевиной со стандартным одномодовым волокном методом плавления при использовании проме-жуточного волокна с градиентом показателя преломления) [in English] // Opticheskii Zhurnal. 2023. V. 90. № 1. P. 76–83. http://doi.org/10.17586/1023-5086-2023-90-01-76-83
Zhe Zhang, Renpu Li, Chaoyong Wang, Min Zhou, Yu Liu, and Yu Pang, "Fusion splicing of hollow-core to standard single-mode fibers using a gradient-index bridge fiber," Journal of Optical Technology. 90(1), 42-45 (2023). https://doi.org/10.1364/JOT.90.000042
High-performance interconnection between hollow-core fiber and conventional solid-core fiber is of great significance for a lot of promising applications of hollow-core fibers. The current problems for high-performance hollow-core fiber/solid-core fiber interconnection mainly involve mode field mismatch of the two fibers and the complex splicing process. Subject of study. Fusion splicing of anti-resonant hollow core fiber with low loss (0.52 dB) and conventional single mode fiber using a convenient graded index bridge fiber. Purpose of the work. Eliminate the mode field diameter mismatch between anti-resonant hollow core fiber and single mode fiber, and simplify the mode field diameter adaptation method and process. Method. We employ a convenient graded index bridge fiber approach, where a gradient index fiber is firstly spliced with the single mode fiber, and the modes interference within the graded index bridge fiber causes periodic enlargement and shrinkage of the mode field diameter. By precious cutting of the graded index bridge fiber, the mode field diameter can be well controlled and made approximately equal to the mode field diameter of the anti-resonant hollow core fiber. After mode field diameter adaptation, an optimized arc discharge fusion splicing procedure is applied for the anti-resonant hollow core fiber/single mode fiber fusion splicing. Main result. A fusion splicing loss of about 0.52 dB is achieved, which involves near 0.42 dB mode field diameter-mismatch-induced loss and about 0.1 dB fusion splicing loss that caused by the deformation of the anti-resonant hollow core fiber. Practical significance. The developed approach is convenient and cost-effective, which can benefit a lot of applications of anti-resonant hollow core fibers in future telecommunications, fiber gas lasers as well as fiber-optic sensing.
Acknowledgement: this work is supported by the China Postdoctoral Science Foundation (2020M683184) and Guangdong Basic and Applied Basic Research Foundation (32221295).
anti-resonant hollow-core fiber, fusion splicing, gradient-index bridge fiber, mode field mismatch, low loss
OCIS codes: 060.2310, 060.4080, 230.0230, 060.0060, 220.0220
References:- Habib M.S., AntonioLopez J.E., Markos C., Schülzgen A., Correa R.A. Singlemode, low loss hollowcore antiresonant fiber designs // Opt. Exp. 2019. V. 27. № 4. P. 3824–3836. https://doi.org/10.1364/OE.27.003824
- Jasion G.T., Sakr H., Hayes J.R., Sandoghchi S.R., Hooper L., Fokoua E.N., Saljoghei A., Mulvad H.C., Alonso M., Taranta A., Bradley T.D., Davidson I.A., Chen Y., Richardson D.J., Poletti F. 0.174 dB/km Hollow core double nested antiresonant nodeless fiber (DNANF) // Optical Fiber Commun. Conf. (OFC). San Diego, California, United States. Mar. 6–10, 2022. P. Th4C.7. https://doi.org/10.1364/OFC.2022.Th4C.7
- Sakr H., Bradley T.D., Jasion G.T., Fokoua E.N., Sandoghchi S.R., Davidson I.A., Taranta A., Guerra G., Shere W., Chen Y., Hayes J.R., Richardson D.J., Poletti F. Hollow core nanfs with five nested tubes and record low loss at 850, 1060, 1300 and 1625 nm // Optical Fiber Commun. Conf. (OFC). San Diego, California, United States. Jun. 6–11, 2021. P. F3A.4. https://doi.org/10.1364/OFC.2021.F3A.4
- Couny F., Benabid F., Roberts P.J., Light P.S., Raymer M.G. Generation and photonic guidance of multioctave opticalfrequency combs // Science. 2007. V. 318. № 5853. P. 1118–1121. https://doi.org/10.1126/science.1149091.
- Poletti F. Nested antiresonant nodeless hollow core fiber // Opt. Exp. 2014. V. 22. № 20. P. 23807–23828. https://doi.org/10.1364/OE.22.023807
- Debord B., Amsanpally A., Chafer M., Baz A., Maurel M., Blondy J.M., Hugonnot E., Scol F., Vincetti L., Gérôme F., Benabid F. Ultralow transmission loss in inhibitedcoupling guiding hollow fibers // Optica. 2017. V. 4. № 2. P. 209–217. https://doi.org/10.1364/OPTICA.4.000209
- Sakr H., Hong Y., Bradley T.D., Jasion G.T., Hayes J.R., Kim H., Davidson I.A., Numkam Fokoua E., Chen Y., Bottrill K.R.H., Taengnoi N., Wheeler N.V., Petropoulos P., Richardson D.J., Poletti F. Interband short reach data transmission in ultrawide bandwidth hollow core fiber // J. Lightwave Technol. 2020. V. 38. № 1. P. 159–165. https://doi.org/10.1109/JLT.2019.2943178
- Ding W., Wang Y.Y., Gao S.F., Wang M.L., Wang P. Recent progress in lowloss hollowcore antiresonant fibers and their applications // IEEE J. Sel. Top. Quantum Electron. 2020. V. 6. № 4. P. 44003121–12. https://doi.org/10.1109/JSTQE.2019.2957445
- Wang Z.F., Belardi W., Yu F., Wadsworth W.J., Knight J.C. Efficient diodepumped midinfrared emission from acetylenefilled hollowcore fiber // Opt. Exp. 2014. V. 22. № 18. P. 21872–21878. https://doi.org/10.1364/OE.22.021872
- Sollapur R., Kartashov D., Zürch M., Hoffmann A., Grigorova T., Sauer G., Hartung A., Schwuchow A., Bierlich J., Kobelke J., Chemnitz M., Schmidt M.A., Spielmann C. Resonanceenhanced multioctave supercontinuum generation in antiresonant hollowcore fibers // Light Sci. Appl. 2017. V. 6. № 1. P. e171241–7. https://doi.org/10.1038/lsa.2017.124
- Habib M.S., Markos C., AntonioLopez J.E., AmezcuaCorrea R. Extreme UV light generation through dispersive wave trapping in a tapered gasfilled hollow fiber // IEEE Photonics Technol. Lett. 2019. V. 31. № 10. P. 795–798. https://doi.org/10.1109/LPT.2019.2908953
- Wang Y.Z., Dasa M.K., Adamu A.I., AntonioLopez J.E., Selim Habib M., AmezcuaCorrea R., Bang O., Markos C. High pulse energy and quantum efficiency midinfrared gas Raman fiber laser targeting CO2 absorption at 4.2 µm // Opt. Lett. 2020. V. 45. № 7. P. 1938–1941. https://doi.org/10.1364/OL.389613
- Zhang Z., Liao C.R., Tang J., Wang Y., Bai Z.Y., Li Z.Y., Guo K.K., Deng M., Shao L.Q., Wang Y.P. Hollowcorefiberbased interferometer for high temperature measurements // IEEE Photon. J. 2017. V. 9. № 2. P. 1–9. https://doi.org/10.1109/JPHOT.2017.2671437
- Zhang Z., He J., Dong Q., Bai Z.Y., Liao C.R., Wang Y., Liu S., Guo K.K., Wang Y.P. Diaphragmfree gaspressure sensor probe based on hollowcore photonic bandgap fiber // Opt. Lett. 2018. V. 43. № 13. P. 3017–3020. https://doi.org/10.1364/OL.43.003017
- Zhao P.C., Zhao Y., Bao H.H., Ho H.L., Jin W., Fan S.C., Gao S.F., Wang Y.Y., Wang P. Modephasedifference photothermal spectroscopy for gas detection with an antiresonant hollowcore optical fiber // Nat. Commun. 2020. V. 11. № 1. P. 8471–8. https://doi.org/10.1038/s41467020147070
- Jaworski P., Krzempek K., Dudzik G., Sazio P.J., Belardi W. Nitrous oxide detection at 5.26 µm with a compound glass antiresonant hollowcore optical fiber // Opt. Lett. 2020. V. 45. № 6. P. 1326–1329. https://doi.org/10.1364/AO.99.099999
- Hansen T.P., Broeng J., Jakobsen C., Vienne G., Simonsen H.R., Nielsen M.D., Skovgaard P.M.W., Folkenberg J.R., Bjarklev A. Airguiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling // J. Lightwave Technol. 2004. V. 22. № 1. P. 11–15. https://doi.org/10.1109/JLT.2003.822833
- Benabid F., Couny F., Knight J.C., Birks T.A., Russell P.S.J. Compact, stable and efficient allfiber gas cells using hollowcore photonic crystal fibers // Nature. 2005. V. 434. № 7032. P. 488–491. https://doi.org/10.1038/nature03349
- Thapa R., Knabe K., Corwin K.L., Washburn B.R. Arc fusion splicing of hollowcore photonic bandgap fibers for gasfilled fiber cells // Opt. Exp. 2006. V. 14. № 21. P. 9576–9583. https://doi.org/ 10.1364/OE.14.009576
- Xiao L.M., Demokan M.S., Jin W., Wang Y.P., Zhao C.L. Fusion splicing photonic crystal fibers and conventional singlemode fibers: Microhole collapse effect // J. Lightwave Technol. 2007. V. 25. № 11. P. 3563–3574. https://doi.org/10.1109/JLT.2007.907787
- Gao S.F., Wang Y.Y., Tian C.P., Wang P. Splice loss optimization of a photonic bandgap fiber via a high Vnumber fiber // IEEE Photonics Technol. Lett. 2014. V. 26. № 21. P. 2134–2137. https://doi.org/10.1109/LPT.2014.2349519
- Jin W., Xuan H.F., Ho H.L. Sensing with hollowcore photonic bandgap fibers // Meas. Sci. Technol. 2010. V. 21. № 9. P. 0940141–12. https://doi.org/10.1088/09570233/21/9/094014
- Komanec M., Suslov D., Zvánovec S., Chen Y., Bradley T., Sandoghchi S.R., Numkam Fokoua E.R., Jasion G.T., Petrovich M.N., Poletti F., Richardson D.J., Slavík R. Lowloss and lowbackreflection hollowcore to standard fiber interconnection // IEEE Photonics Technol. Lett. 2019. V. 31. № 10. P. 723–726. https://doi.org/10.1109/LPT.2019.2902635
- Suslov D., Komanec M., Numkam Fokoua E.R., Dousek D., Zhong A.L., Zvánovec S., Bradley T.D., Poletti F., Richardson D.J., Slavík R. Low loss and highperformance interconnection between standard single mode fiber and antiresonant hollow core fiber // Sci. Rep. 2021. V. 11. № 1. P. 87991–9. https://doi.org/10.1038/s41598021880652
- Yu R.W., Wang C.Y., Benabid F., Chiang K.S., Xiao L.M. Robust mode matching between structurally dissimilar optical fiber waveguides // ACS Photonics. 2021. V. 8. № 3. P. 857–863. https://doi.org/10.1021/acsphotonics.0c01859
- Wang C.Y., Yu R.W., Debord B., Gérôme F., Benabid F., Chiang K.S., Xiao L.M. Ultralowloss fusion splicing between negative curvature hollowcore fibers and conventional SMFs with a reversetapering method // Opt. Exp. 2021. V. 29. № 14. P. 22470–22478. https://doi.org/10.1364/OE.432147
- Hofmann P., Mafi A., Jollive C.T., Tiess T., Peyghambarian N., Schülzgen A. Detailed investigation of modefield adapters utilizing multimodeinterference in graded index fibers // J. Lightwave Technol. 2012. V. 30. № 14. P. 2289–2297. https://doi.org/10.1109/JLT.2012.2196406
- Zhang Z., He J., Du B., Zhang F.C., Guo K.K., Wang Y.P. Measurement of high pressure and high temperature using a dualcavity Fabry–Perot interferometer created in cascade hollowcore fibers // Opt. Lett. 2018. V. 43. № 24. P. 6009–6012. https://doi.org/10.1364/OL.43.006009
- Zhang Z., He J., Du B., Guo K.K., Wang Y.P. Highly sensitive gas refractive index sensor based on hollowcore photonic bandgap fiber // Opt. Exp. 2019. V. 27. № 21. P. 29649–29658. https://doi.org/10.1364/OE.27.029649