ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-01-84-95

УДК: 535, 617.7, 628.9

Ultra-high sensitivity gas pressure sensor based on a cascaded Fabry–Perot interferometers and Vernier effect

For Russian citation (Opticheskii Zhurnal):

Guo X., Jiang C., Ye W., Sun S., Liu C., Huang H. Ultra-high sensitivity gas pressure sensor based on a cascaded Fabry–Perot interferometers and Vernier effect (Высокочувствительный датчик давления газа на основе каскадных интерферометров Фабри–Перо и эффекта Вернье) [на англ. яз.] // Оптический журнал. 2023. Т. 90. № 1. С. 84–95. http://doi.org/ 10.17586/1023-5086-2023-90-01-84-95

 

Guo X., Jiang C., Ye W., Sun S., Liu C., Huang H. Ultra-high sensitivity gas pressure sensor based on a cascaded Fabry–Perot interferometers and Vernier effect (Высокочувствительный датчик давления газа на основе каскадных интерферометров Фабри–Перо и эффекта Вернье)[in English] // Opticheskii Zhurnal. 2023. V. 90. № 1. P. 84–95. http://doi.org/10.17586/1023-5086-2023-90-01-84-95

For citation (Journal of Optical Technology):

Xiaoshan Guo, Chao Jiang, Wenhao Ye, Simei Sun, Changning Liu, and Huiling Huang, "Ultra-high-sensitivity gas pressure sensor based on a cascaded Fabry-Perot interferometer and the Vernier effect," Journal of Optical Technology. 90(1), 46-53 (2023). https://doi.org/10.1364/JOT.90.000046

Abstract:

Subject of study. An ultra sensitive gas pressure sensor based on a cascaded Fabry–Perot interferometer is proposed. Purpose of the work. In the proposed sensor, we greatly improve the gas pressure sensitivity of the sensor by using the optical Vernier effect method. Method. During the fabrication of the sensor, one Fabry–Perot interferometer is used as the sensing interferometer and the other Fabry–Perot interferometer is used as the reference interferometer. Both Fabry–Perot interferometers are fabricated by two sections of single-mode fibers spliced at both ends of a section of quartz capillary. Then, a micro hole is drilled in the capillary wall of the sensing Fabry–Perot interferometer by using femtosecond laser micro-processing technology for gas pressure measurement. When the free spectral ranges of two Fabry–Perot interferometers are similar, the optical Vernier effect will be generated by cascading them. By precisely controlling the cavity length difference between two Fabry–Perot interferometers, a very high sensitivity magnification factor can be obtained. Main Results. The experimental results show that the sensitivity of the Vernier effect sensor is 133.2 nm/MPa in the pressure measurement range of 0–0.8 Mpa, which is 33.3 times higher than that of the single sensor Fabry–Perot interferometer. In addition, the temperature cross-sensitivity of the sensor is relatively small, only 0.93 kPa/°C. The sensor is flexible in design, easy to manufacture and operate. Practical significance. The proposed sensor has extremely high gas pressure sensitivity, and it can be used in the fields of chemical production, pharmaceutical, oil and gas storage, environmental protection for high sensitivity gas pressure measurement.

 

Acknowledgement : this work was supported by the Middle-aged and Youth Science and Technology Innovation Team of Hubei Province Universities (T2020014); the Natural Science Foundation of Hubei Province (№ 2020CFB468); the Foundation of Graduate Innovation Research of Hubei Normal University (20210111).

Keywords:

optical fiber sensor, Fabry–Perot interferometer, femtosecond laser micro-machining, quartz capillary, gas pressure

OCIS codes: 060.2370, 050.2230, 130.6010, 280.4788

References:
  1. Tang J., Zhang Z., Yin G., Liu S., Bai Z., Li Z., Deng M., Wang Y., Liao C., He J., Jin W, Peng G., Wang Y.Y. Long period fiber grating inscribed in hollow­core photonic bandgap fiber for gas pressure sensing // IEEE Photon. J. 2017. V. 9. № 5. P. 7105307. https://doi.org/10.1109/JPHOT.2017.2738666
  2. Yang D., Liu Y., Wang Y., Zhang T., Shao M., Yu D., Fu H., Jia Z. Integrated optic­fiber sensor based one closed EFPI and structural phase­shift for discriminating measurement of temperature, pressure and RI // Opt. Laser Technol. 2020.V. 126. P. 106112.
  3. Hou M., Zhu F., Wang Y., Wang Y.P., Liao C., Liu S., Lu P. Antiresonant reflecting guidance mechanism in hollow­core fiber for gas pressure sensing // Opt. Exp. 2016. V. 24. № 24. P. 27890–27898. https://doi.org/10.1364/OE.24.027890
  4. Liu Y., Zhang T., Wang Y., Yang D., Liu X., Fu H., Jia Z. Highly­sensitive gas pressure sensor using twin­core fiber based in­line Mach–Zehnder interferometer // Opt. Exp. 2015. V. 23. № 5. P. 6673–6678. https://doi.org/10.1364/OE.23.006673
  5. Xu B., Liu Y.M., Wang D.N., Li J.Q. Fiber Fabry–Perot interferometer for measurement of gas pressure and temperature // J. Lightwave Technol. 2016. V. 34. № 21. P. 4920–4925. https://doi.org/10.1109/JLT.2016.2598573
  6. Jin L., Guan B.O., Wei H.F. Sensitivity characteristics of Fabry–Pérot pressure sensors based on hollow­core microstructured fibers // J. Lightwave Technol. 2013. V. 31. № 15. P. 2526–2532. https://doi.org/10.1109/JLT.2013.2269136
  7. Liu Y., Yang D., Wang Y., Zhang T., Shao M., Yu D., Fu H., Jia Z. Fabrication of dual­parameter fiber­optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure // Opt. Commun. 2019. V. 443. P. 166–171. https://doi.org/10.1016/j.optcom.2019.03.034
  8. Cheng X., Dash J.N., Gunawardena D.S., Htein L., Tam H.Y. Silicone rubber based highly sensitive fiber­optic Fabry–Perot interferometric gas pressure sensor // Sensors. 2020. V. 20. № 17. P. 4927. https://doi.org/10.3390/s20174927
  9. Zhang Z., Liao C., Tang J., Bai Z., Guo K., Hou M., He J., Wang Y., Liu S., Zhang F., Wang Y.Y. High­sensitivity gas­pressure sensor based on fiber­tip PVC diaphragm Fabry–Perot interferometer // J. Lightwave Technol. 2017. V. 35. № 18. P. 4067–4071. https://doi.org/10.1109/JLT.2017.2710210
  10. Chen W., Wang D.N., Xu B., Zhao C., Chen H. Multimode fiber tip Fabry–Perot cavity for highly sensitive pressure measurement // Sci. Rep. 2017. V. 7. P. 368. https://doi.org/10.1038/s41598­017­00300­x
  11. Cheng L., Wang C., Huang Y., Liang H., Guan B. Silk fibroin diaphragm­based fiber­tip Fabry–Perot pressure sensor // Opt. Exp. 2016. V. 24. № 17. P. 19600–19606. https://doi.org/10.1364/OE.24.019600
  12. Yang X., Li Y., Yang S., Wang S. Comparison of fiber­based gas pressure sensors using hollow­core photonic crystal fibers // IEEE Photon. J. 2021. V. 13. № 2. P. 6800209. https://doi.org/10.1109/JPHOT.2021.3059925
  13. Zhang Z., He J., Dong Q., Bai Z., Liao C., Wang Y., Liu S., Guo K., Wang Y.Y. Diaphragm­free gas­pressure sensor probe based on hollow­core photonic bandgap fiber // Opt. Lett. 2018. V. 43. № 13. P. 3017–3020. https://doi.org/10.1364/OL.43.003017
  14. Liang H., Jia P., Liu J., Fang G., Li Z., Hong Y., Liang T., Xiong J. Diaphragm­free fiber­optic Fabry–Perot interferometric gas pressure sensor for high temperature application // Sensors. 2018. V. 18. № 4. P. 1011. https://doi.org/10.3390/s18041011
  15. Zhang Z., He J., Du B., Zhang F., Guo K., Wang Y.Y. Measurement of high pressure and high temperature using a dual­cavity Fabry–Perot interferometer created in cascade hollow­core fibers // Opt. Lett. 2018. V. 43. № 24. P. 6009–6012. https://doi.org/10.1364/OL.43.006009
  16. He H., Liu Y., Liao Y., Lang C., Li Y., Qu S. Simple fiber­optic sensor for simultaneous and sensitive measurement of high pressure and high temperature based on the silica capillary tube // Opt. Exp. 2019. V. 27. № 18. P. 25777–25788. https://doi.org/10.1364/OE.27.025777
  17. Zhang L., Jiang Y., Gao H., Jia J., Cui Y., Ma W., Wang S., Hu J. A diaphragm­free fiber Fabry–Perot gas pressure sensor // Rev. Sci. Instrum. 2019. V. 90. № 2. P. 025005. https://doi.org/10.1063/1.5055660
  18. Yang F., Tan Y., Jin W., Lin Y., Qi Y., Ho H. Hollow­core fiber Fabry–Perot photo­thermal gas sensor // Opt. Lett. 2016. V. 41. № 13. P. 3025–3028. https://doi.org/10.1364/OL.41.003025
  19. Tang J., Yin G., Liao C., Liu S., Li Z., Zhong X., Wang Q., Zhao J., Yang K., Wang Y.Y. High­sensitivity gas pressure sensor based on Fabry–Perot interferometer with a side­opened channel in hollow­core photonic bandgap fiber // IEEE Photon. J. 2015. V. 7. № 6. P. 6803307. https://doi.org/10.1109/JPHOT.2015.2489926
  20. Wang Q.H., Liu X., Wang D.N. Ultra­sensitive gas pressure sensor based on Vernier effect with controllable amplification factor // Opt. Fiber Technol. 2021. V. 61. P. 102404. https://doi.org/10.1016/j.yofte.2020.102404
  21. Li Z., Zhang Y., Zhang W., Kong L., Yan T., Geng P., Wang B. High­sensitivity gas pressure Fabry–Perot fiber probe with micro­channel based on Vernier effect // J. Lightwave Technol. 2019. V. 37. № 14. P. 3444–3451. https://doi.org/10.1109/JLT.2019.2917062
  22. Yang Y., Wang Y., Jiang J., Zhao Y., He X., Lia L. High­sensitive all­fiber Fabry–Perot interferometer gas refractive index sensor based on lateral offset splicing and Vernier effect // Optik. 2019. V. 196. P. 163181. https://doi.org/10.1016/j.ijleo.2019.163181
  23. Yang X., Wu S., Cheng H., Ma J., Wang S., Liu S., Lu P.X. Simplified highly­sensitive gas pressure sensor based on harmonic Vernier effect // Opt. Laser Technol. 2021. V. 140. P. 107007. https://doi.org/10.1016/j.optlastec.2021.107007
  24. Chen P., Dai Y., Zhang D., Wen X., Yang M.H. Cascaded­cavity Fabry–Perot interferometric gas pressure sensor based on Vernier effect // Sensors. 2018. V. 18. № 11. P. 3677. https://doi.org/ 10.3390/s18113677
  25. Zhang X., Pan H., Bai H., Yan M., Wang J., Deng C., Wang T. Transition of Fabry–Perot and antiresonant mechanisms via a SMF­capillarySMF structure // Opt. Lett. 2018. V. 43. № 10. P. 2268–2271. https://doi.org/10.1364/OL.43.002268
  26. Gao H., Jiang Y., Zhang L., Cui Y., Jiang Y., Jia J., Jiang L. Antiresonant mechanism based self­temperature­calibrated fiber optic Fabry–Perot gas pressure sensors // Opt. Exp. 2019. V. 27. № 16. P. 22181–22189. https://doi.org/10.1364/OE.27.022181