DOI: 10.17586/1023-5086-2023-90-01-84-95
УДК: 535, 617.7, 628.9
Ultra-high sensitivity gas pressure sensor based on a cascaded Fabry–Perot interferometers and Vernier effect
Full text on elibrary.ru
Publication in Journal of Optical Technology
Guo X., Jiang C., Ye W., Sun S., Liu C., Huang H. Ultra-high sensitivity gas pressure sensor based on a cascaded Fabry–Perot interferometers and Vernier effect (Высокочувствительный датчик давления газа на основе каскадных интерферометров Фабри–Перо и эффекта Вернье) [на англ. яз.] // Оптический журнал. 2023. Т. 90. № 1. С. 84–95. http://doi.org/ 10.17586/1023-5086-2023-90-01-84-95
Guo X., Jiang C., Ye W., Sun S., Liu C., Huang H. Ultra-high sensitivity gas pressure sensor based on a cascaded Fabry–Perot interferometers and Vernier effect (Высокочувствительный датчик давления газа на основе каскадных интерферометров Фабри–Перо и эффекта Вернье)[in English] // Opticheskii Zhurnal. 2023. V. 90. № 1. P. 84–95. http://doi.org/10.17586/1023-5086-2023-90-01-84-95
Xiaoshan Guo, Chao Jiang, Wenhao Ye, Simei Sun, Changning Liu, and Huiling Huang, "Ultra-high-sensitivity gas pressure sensor based on a cascaded Fabry-Perot interferometer and the Vernier effect," Journal of Optical Technology. 90(1), 46-53 (2023). https://doi.org/10.1364/JOT.90.000046
Subject of study. An ultra sensitive gas pressure sensor based on a cascaded Fabry–Perot interferometer is proposed. Purpose of the work. In the proposed sensor, we greatly improve the gas pressure sensitivity of the sensor by using the optical Vernier effect method. Method. During the fabrication of the sensor, one Fabry–Perot interferometer is used as the sensing interferometer and the other Fabry–Perot interferometer is used as the reference interferometer. Both Fabry–Perot interferometers are fabricated by two sections of single-mode fibers spliced at both ends of a section of quartz capillary. Then, a micro hole is drilled in the capillary wall of the sensing Fabry–Perot interferometer by using femtosecond laser micro-processing technology for gas pressure measurement. When the free spectral ranges of two Fabry–Perot interferometers are similar, the optical Vernier effect will be generated by cascading them. By precisely controlling the cavity length difference between two Fabry–Perot interferometers, a very high sensitivity magnification factor can be obtained. Main Results. The experimental results show that the sensitivity of the Vernier effect sensor is 133.2 nm/MPa in the pressure measurement range of 0–0.8 Mpa, which is 33.3 times higher than that of the single sensor Fabry–Perot interferometer. In addition, the temperature cross-sensitivity of the sensor is relatively small, only 0.93 kPa/°C. The sensor is flexible in design, easy to manufacture and operate. Practical significance. The proposed sensor has extremely high gas pressure sensitivity, and it can be used in the fields of chemical production, pharmaceutical, oil and gas storage, environmental protection for high sensitivity gas pressure measurement.
Acknowledgement : this work was supported by the Middle-aged and Youth Science and Technology Innovation Team of Hubei Province Universities (T2020014); the Natural Science Foundation of Hubei Province (№ 2020CFB468); the Foundation of Graduate Innovation Research of Hubei Normal University (20210111).
optical fiber sensor, Fabry–Perot interferometer, femtosecond laser micro-machining, quartz capillary, gas pressure
OCIS codes: 060.2370, 050.2230, 130.6010, 280.4788
References:- Tang J., Zhang Z., Yin G., Liu S., Bai Z., Li Z., Deng M., Wang Y., Liao C., He J., Jin W, Peng G., Wang Y.Y. Long period fiber grating inscribed in hollowcore photonic bandgap fiber for gas pressure sensing // IEEE Photon. J. 2017. V. 9. № 5. P. 7105307. https://doi.org/10.1109/JPHOT.2017.2738666
- Yang D., Liu Y., Wang Y., Zhang T., Shao M., Yu D., Fu H., Jia Z. Integrated opticfiber sensor based one closed EFPI and structural phaseshift for discriminating measurement of temperature, pressure and RI // Opt. Laser Technol. 2020.V. 126. P. 106112.
- Hou M., Zhu F., Wang Y., Wang Y.P., Liao C., Liu S., Lu P. Antiresonant reflecting guidance mechanism in hollowcore fiber for gas pressure sensing // Opt. Exp. 2016. V. 24. № 24. P. 27890–27898. https://doi.org/10.1364/OE.24.027890
- Liu Y., Zhang T., Wang Y., Yang D., Liu X., Fu H., Jia Z. Highlysensitive gas pressure sensor using twincore fiber based inline Mach–Zehnder interferometer // Opt. Exp. 2015. V. 23. № 5. P. 6673–6678. https://doi.org/10.1364/OE.23.006673
- Xu B., Liu Y.M., Wang D.N., Li J.Q. Fiber Fabry–Perot interferometer for measurement of gas pressure and temperature // J. Lightwave Technol. 2016. V. 34. № 21. P. 4920–4925. https://doi.org/10.1109/JLT.2016.2598573
- Jin L., Guan B.O., Wei H.F. Sensitivity characteristics of Fabry–Pérot pressure sensors based on hollowcore microstructured fibers // J. Lightwave Technol. 2013. V. 31. № 15. P. 2526–2532. https://doi.org/10.1109/JLT.2013.2269136
- Liu Y., Yang D., Wang Y., Zhang T., Shao M., Yu D., Fu H., Jia Z. Fabrication of dualparameter fiberoptic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure // Opt. Commun. 2019. V. 443. P. 166–171. https://doi.org/10.1016/j.optcom.2019.03.034
- Cheng X., Dash J.N., Gunawardena D.S., Htein L., Tam H.Y. Silicone rubber based highly sensitive fiberoptic Fabry–Perot interferometric gas pressure sensor // Sensors. 2020. V. 20. № 17. P. 4927. https://doi.org/10.3390/s20174927
- Zhang Z., Liao C., Tang J., Bai Z., Guo K., Hou M., He J., Wang Y., Liu S., Zhang F., Wang Y.Y. Highsensitivity gaspressure sensor based on fibertip PVC diaphragm Fabry–Perot interferometer // J. Lightwave Technol. 2017. V. 35. № 18. P. 4067–4071. https://doi.org/10.1109/JLT.2017.2710210
- Chen W., Wang D.N., Xu B., Zhao C., Chen H. Multimode fiber tip Fabry–Perot cavity for highly sensitive pressure measurement // Sci. Rep. 2017. V. 7. P. 368. https://doi.org/10.1038/s4159801700300x
- Cheng L., Wang C., Huang Y., Liang H., Guan B. Silk fibroin diaphragmbased fibertip Fabry–Perot pressure sensor // Opt. Exp. 2016. V. 24. № 17. P. 19600–19606. https://doi.org/10.1364/OE.24.019600
- Yang X., Li Y., Yang S., Wang S. Comparison of fiberbased gas pressure sensors using hollowcore photonic crystal fibers // IEEE Photon. J. 2021. V. 13. № 2. P. 6800209. https://doi.org/10.1109/JPHOT.2021.3059925
- Zhang Z., He J., Dong Q., Bai Z., Liao C., Wang Y., Liu S., Guo K., Wang Y.Y. Diaphragmfree gaspressure sensor probe based on hollowcore photonic bandgap fiber // Opt. Lett. 2018. V. 43. № 13. P. 3017–3020. https://doi.org/10.1364/OL.43.003017
- Liang H., Jia P., Liu J., Fang G., Li Z., Hong Y., Liang T., Xiong J. Diaphragmfree fiberoptic Fabry–Perot interferometric gas pressure sensor for high temperature application // Sensors. 2018. V. 18. № 4. P. 1011. https://doi.org/10.3390/s18041011
- Zhang Z., He J., Du B., Zhang F., Guo K., Wang Y.Y. Measurement of high pressure and high temperature using a dualcavity Fabry–Perot interferometer created in cascade hollowcore fibers // Opt. Lett. 2018. V. 43. № 24. P. 6009–6012. https://doi.org/10.1364/OL.43.006009
- He H., Liu Y., Liao Y., Lang C., Li Y., Qu S. Simple fiberoptic sensor for simultaneous and sensitive measurement of high pressure and high temperature based on the silica capillary tube // Opt. Exp. 2019. V. 27. № 18. P. 25777–25788. https://doi.org/10.1364/OE.27.025777
- Zhang L., Jiang Y., Gao H., Jia J., Cui Y., Ma W., Wang S., Hu J. A diaphragmfree fiber Fabry–Perot gas pressure sensor // Rev. Sci. Instrum. 2019. V. 90. № 2. P. 025005. https://doi.org/10.1063/1.5055660
- Yang F., Tan Y., Jin W., Lin Y., Qi Y., Ho H. Hollowcore fiber Fabry–Perot photothermal gas sensor // Opt. Lett. 2016. V. 41. № 13. P. 3025–3028. https://doi.org/10.1364/OL.41.003025
- Tang J., Yin G., Liao C., Liu S., Li Z., Zhong X., Wang Q., Zhao J., Yang K., Wang Y.Y. Highsensitivity gas pressure sensor based on Fabry–Perot interferometer with a sideopened channel in hollowcore photonic bandgap fiber // IEEE Photon. J. 2015. V. 7. № 6. P. 6803307. https://doi.org/10.1109/JPHOT.2015.2489926
- Wang Q.H., Liu X., Wang D.N. Ultrasensitive gas pressure sensor based on Vernier effect with controllable amplification factor // Opt. Fiber Technol. 2021. V. 61. P. 102404. https://doi.org/10.1016/j.yofte.2020.102404
- Li Z., Zhang Y., Zhang W., Kong L., Yan T., Geng P., Wang B. Highsensitivity gas pressure Fabry–Perot fiber probe with microchannel based on Vernier effect // J. Lightwave Technol. 2019. V. 37. № 14. P. 3444–3451. https://doi.org/10.1109/JLT.2019.2917062
- Yang Y., Wang Y., Jiang J., Zhao Y., He X., Lia L. Highsensitive allfiber Fabry–Perot interferometer gas refractive index sensor based on lateral offset splicing and Vernier effect // Optik. 2019. V. 196. P. 163181. https://doi.org/10.1016/j.ijleo.2019.163181
- Yang X., Wu S., Cheng H., Ma J., Wang S., Liu S., Lu P.X. Simplified highlysensitive gas pressure sensor based on harmonic Vernier effect // Opt. Laser Technol. 2021. V. 140. P. 107007. https://doi.org/10.1016/j.optlastec.2021.107007
- Chen P., Dai Y., Zhang D., Wen X., Yang M.H. Cascadedcavity Fabry–Perot interferometric gas pressure sensor based on Vernier effect // Sensors. 2018. V. 18. № 11. P. 3677. https://doi.org/ 10.3390/s18113677
- Zhang X., Pan H., Bai H., Yan M., Wang J., Deng C., Wang T. Transition of Fabry–Perot and antiresonant mechanisms via a SMFcapillarySMF structure // Opt. Lett. 2018. V. 43. № 10. P. 2268–2271. https://doi.org/10.1364/OL.43.002268
- Gao H., Jiang Y., Zhang L., Cui Y., Jiang Y., Jia J., Jiang L. Antiresonant mechanism based selftemperaturecalibrated fiber optic Fabry–Perot gas pressure sensors // Opt. Exp. 2019. V. 27. № 16. P. 22181–22189. https://doi.org/10.1364/OE.27.022181