DOI: 10.17586/1023-5086-2023-90-10-116-128
УДК: УДК 535.8
Features of silver nanoparticles synthesis and interaction with dibutyl phthalate in aqueous solutions for sensor applications
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кулагина А.С., Шугабаев Т., Евстропьев С.К., Кузнецов А., Убыйвовк Е.В., Шмаков С.В., Березовская Т.Н., Букатин А.С., Цырлин Г.Э., Данилов В.В. Особенности синтеза наночастиц серебра и взаимодействия с дибутилфталатом в водных растворах для сенсорных применений // Оптический журнал. 2023. Т. 90. № 10. С. 116–128. http://doi.org/10.17586/1023-5086-2023-90-10-116-128
Kulagina A.S., Shugabaev T., Evstropiev S.K., Kuznetsov A., Ubyivovk E.V., Shmakov S.V., Berezovskaya T.N., Bukatin A.S., Cirlin G.E., Danilov V.V. Features of silver nanoparticles synthesis and interaction with dibutyl phthalate in aqueous solutions for sensor applications [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 10. P. 116–128. http://doi.org/10.17586/1023-5086-2023-90-10-116-128
Subject and purpose of the study. The subject of the study is the quantitative and qualitative features of the complex formation of nanoparticles of metallic silver and phthalates. The purpose of this work was to determine the conditions for the formation of stable complexes of silver nanoparticles with dibutyl phthalate in an aqueous solution. To achieve the goal a full cycle of comparative studies of silver nanoparticles has been carried out from synthesis to establishing the possibility of binding dibutyl phthalate for further creation of an accessible sensor based on them for determination of various phthalates in water. Methods. Chemical methods were used for the synthesis of nanoparticles, the modification of their surface with nucleotides, and the connection of nanoparticles with phthalates. To study the interaction of silver nanoparticles with each component of organoinorganic complex, namely sodium citrate (hereinafter referred to as citrate), uridine5ўtriphosphate (hereinafter referred to as uridine or UTP), copper ions (Cu2+) and dibutyl phthalate (DBP), methods of optical spectroscopy and transmission electron microscopy were used. Main results. Metallic silver nanoparticles have been synthesized using four agents safe for humans, acting simultaneously as a reducing agent and stabilizer (citrate, polyethylene glycol, polyvinylpyrrolidone, orange extract). Nanoparticles, synthesized using sodium citrate, were selected for further use as phthalate sensors in terms of stability parameters and range of research methods. The change of the silver nanoparticles’ ligand shell by uridine molecules and the formation of chemical bonds between them and phthalate involving copper ions have been shown. Raman spectra and transmission electron microscopy images of Ag/UTPCu2+DBP complexes were obtained for the first time, confirming the chemical bonding of silver nanoparticles and phthalates. The optimal molar ratio of Ag/UTP nanoparticles and copper ions in solution for the subsequent process of complex formation has been found. Practical significance. The formation of complexes between dibutyl phthalate and modified silver nanoparticles has been shown for the first time in the absence of alcohol and any buffer solutions. The detection of phthalates using silver nanoparticles is a promising technology for creating a simple nanosensor with additional plasmonic and antibacterial properties. Besides the extremely important ecological significance of the study of hybrid systems based on Ag nanoparticles, it also contributes to the development of methods for passivation of the surface of metal nanoparticles. In a broad sense, the studies carried out are of interest for the development of sensor detection technologies for organicinorganic compounds.
plasmonic silver nanoparticles, dibutyl phthalate nanosensors in liquid media, Raman spectra, transmission electron microscopy, surface modification, uridine 5'triphosphate, divalent copper ions
OCIS codes: 280.4788, 300.6450, 240.6680
References:- Toxicological profile for dinbutyl phthalate. Atlanta: Agency for toxic substances and disease registry, 2001. 225 p. [Electronic resource]. Access mode: https://www.atsdr.cdc.gov/toxprofiles/tp135.pdf, free. English. (date of the application 1.03.2023)
- Dutta S., Haggerty D.K., Rappolee D.A., Ruden D.M. Phthalate exposure and longterm epigenomic consequences: A Review // Front Genet. 2020. V. 11. P. 405. https://www.doi.org/10.3389/fgene.2020.00405
- Maystrenko V.N., Klyuev N.A. Ecological and analytical monitoring of persistent organic pollutants. M.: Binom. Knowledge Laboratory, 2012. 323 p.
- Kulagina A.S., Danilov V.V., Shilov V.B. Watersoluble InP/ZnS QDs as dibutyl phthalate markers. The influence of alcohol on the solubility of phthalates // Opt. Spectrosc. 2021. V. 129. № 12. P. 1341–1345. https://www.doi.org/10.1134/S0030400X21060072
- Bošnir J., Puntarić D., Galić A., Škes I., Dijanić T., Klarić M., Grgić M., Curković M., Šmit Z. Migration of phthalates from containers into drinks and mineral water // Food Technol. Biotechnol. 2007. V. 45. № 1. P. 91–95.
- "MUK 4.1.348417. 4.1. Control methods. Chemical factors. Determination of phthalates (dimethyl phthalate, diethyl phthalate, dimethyl terephthalate, dibutyl phthalate, di (2ethylhexyl) phthalate, dioctyl phthalate) in alcoholic products by chromatomass spectrometry. Guidelines" (approved by Rospotrebnadzor on September 20, 2017). 20 p.
- Polyvinylpyrrolidone. Food safety commission of Japan: Risk assessment report — Food additives, 2013. 2 p. [Electronic resource]. Access mode: https://www.fsc.go.jp/english/evaluationreports/foodadditive/polyvinylpyrroridone_fs630.pdf, free. English (date of the application 1.03.2023)
- Doty R.Ch., Tshikhudo T.R., Brust M., Fernig D.G. Extremely stable watersoluble Ag nanoparticles // Chem. Mater. 2005. V. 17. № 18. P. 4630–4635. https://www.doi.org/10.1021/cm0508017
- Li W., Guo Y., Zhang P. SERSactive silver nanoparticles prepared by a simple and green method // The J. of Phys. Chem. C. 2010. V. 114. № 14. P. 6413–6417. https://www.doi.org/10.1021/jp100526v
- Hyllested J.A., Palanco M.E., Hagen N., Mogensen K.B., Kneipp K. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents // Beilstein J. Nanotechnol. 2015. V. 6. P. 293–299. https://www.doi.org/10.3762/bjnano.6.27
- RodríguezLeón E., IñiguezPalomares R., Navarro R.E., HerreraUrbina R., Tanori J., IñiguezPalomares C., Maldonado A. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts) // Nanoscale Res. Lett. 2013. V. 8. P. 318. https://www.doi.org/10.1186/1556276X8318
- Evstropiev S.K., Nikonorov N.V., Saratovskii A.S., Dukelskii K.V., Vasiliev V.N., Karavaeva A.V., Soshnikov I.P. Photostimulated evolution of different structural forms of silver in solutions, composite and oxide coatings. // Journal of photochemistry and photobiology A: Photochemistry. 2020. V. 403. P. 112858. https://doi.org/10.1016/j.jphotochem.2020.112858
- Li H., Xia H., Wang D., Tao X. Simple synthesis of monodisperse, quasispherical, citratestabilized silver nanocrystals in water // Langmuir. 2013. V. 29. № 16. P. 5074–5079. https://www.doi.org/10.1021/la400214x
- Decision on the application of sanitary measures in the Eurasian Economic Union. Eurasian Economic Community, 2010. 2348 p. [Electronic resource]. Access mode: https://fsvps.gov.ru/fsvpsdocs/ru/files/vsferefederalnogogosudarstvennogoveterinarnogonadzora/normativnyedokumenty/2resheniekomissiitamozhennogosoyuzaot28052010299oprimeneniisanitarnyhmer.pdf, free. Russian (date of the application 1.03.2023).
- Stolyarchuk M.V., Sidorov A.I. Electronic absorption spectra of neutral and charged silver molecular clusters // Opt. Spectrosc. 2018. V. 125. № 3. P. 305–310. https://www.doi.org/10.1134/S0030400X18090229
- Turkevich J., Stevenson P.S., Hiller J. A Study of the nucleation and growth processes in the synthesis of colloidal gold // Faraday Soc. 1951. V. 11. P. 55–75. https://www.doi.org/10.1039/DF9511100055
- Krajczewski J., Joubert V., Kudelski A. Lightinduced transformation of citratestabilized silver nanoparticles: photochemical method of increase of SERS activity of silver colloids // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2014. V. 456. P. 41–48. https://www.doi.org/10.1016/j.colsurfa.2014.05.005
- Baca S.G., Filippova I.G., Gherco O.A., Gdaniec M., Simonov Yu.A., Gerbeleu N.V., Franz P., Basler R., Decurtins S. Nickel(II), cobalt(II), copper(II), and zinc(II)phthalate and 1methylimidazole coordination compounds: synthesis, crystal structures and magnetic properties // Inorganica Chimica Acta. 2004. V. 357. № 12. P. 3419–3429.
- Helmut S., Naumann C.F., Prijs B.A. Comparison on the coordination tendency towards Cu2+ of the base moieties in guanosine, inosine and adenosine 5'triphosphates // Eur. J. Biochem. 1974. V. 46. P. 589–593. https://www.doi.org/10.1111/j.14321033.1974.tb03654.x
- Lomozik L., Jastrzab R. Noncovalent and coordination interactions in Cu(II) systems with uridine, uridine 59monophosphate and triamine or tetramine as biogenic amine analogues in aqueous solutions // Journal of Inorganic Biochemistry. 2003. V. 97. P. 179–190. https://www.doi.org/10.1016/S01620134(03)002769
- Storhoff J.J., Elghanian R., Mirkin C.A., Letsinger R.L. Sequencedependent stability of DNAmodified gold nanoparticles // Langmuir. 2002. V. 18. № 17. P. 6666–6670. https://doi.org/10.1021/la0202428
- Satyavolu N.S.R., Loh K.Y., Tan L.H., Lu Y. Discovery of and insights into DNA “Codes” for tunable morphologies of metal nanoparticles // Small. 2019. V. 15. P. 1900975. https://doi.org/10.1002/smll.201900975
- Zhang M., Liu YuQ., Ye B.Ce. Rapid and sensitive colorimetric visualization of phthalates using UTPmodified gold nanoparticles crosslinked by copper(II) // Chem. Commun. 2011. V. 47. P. 11849–11851. https://www.doi.org/10.1039/c1cc14772b
- García M.A. Surface plasmons in metallic nanoparticles: fundamentals and applications // Journal of Physics D: Applied Physics. 2011. V. 44. № 28. P. 283001. https://doi.org/10.1088/00223727/44/28/283001
- Cai Y., Piao X., Gao W., Zhang Z., Nie E., Sun Z. Largescale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen // RSC Adv. 2007. V. 7. P. 34041. https://www.doi.org/10.1039/C7RA05125E
- Mukherjee P., Roy M., Mandal B.P., Dey G.K., Mukherjee P.K., Ghatak J., Tyagi A.K., Kale S.P. Green synthesis of highly stabilized nanocrystalline silver particles by a nonpathogenic and agriculturally important fungus T. Asperellum // Nanotechnology. 2008. V. 19. P. 075103–075110. https://doi.org/10.1088/09574484/19/7/075103
- Tingzhu J., Zhang W., Li N., Liu X., Han L., Dai W. Surface characterization and corrosion behavior of 90/10 coppernickel alloy in marine environment // Materials. 2019. V. 12. P. 1869. https://www.doi.org/10.3390/ma12111869