ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-10-116-128

УДК: УДК 535.8

Features of silver nanoparticles synthesis and interaction with dibutyl phthalate in aqueous solutions for sensor applications

For Russian citation (Opticheskii Zhurnal):

Кулагина А.С., Шугабаев Т., Евстропьев С.К., Кузнецов А., Убыйвовк Е.В., Шмаков С.В., Березовская Т.Н., Букатин А.С., Цырлин Г.Э., Данилов В.В. Особенности синтеза наночастиц серебра и взаимодействия с дибутилфталатом в водных растворах для сенсорных применений // Оптический журнал. 2023. Т. 90. № 10. С. 116–128. http://doi.org/10.17586/1023­-5086­-2023­-90-­10­-116­-128

 

Kulagina A.S., Shugabaev T., Evstropiev S.K., Kuznetsov A., Ubyivovk E.V., Shmakov S.V., Berezovskaya T.N., Bukatin A.S., Cirlin G.E., Danilov V.V. Features of silver nanoparticles synthesis and interaction with dibutyl phthalate in aqueous solutions for sensor applications [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 10. P. 116–128. http://doi.org/10.17586/1023­-5086­-2023­-90­-10­-116­-128

 

For citation (Journal of Optical Technology):
A. S. Kulagina, T. Shugabaev, S. K. Evstropiev, A. Kuznetsov, E. V. Ubyivovk, S. V. Shmakov, T. N. Berezovskaya, A. S. Bukatin, G. A. Cirlin, and V. V. Danilov, "Features of silver nanoparticle synthesis and interaction with dibutyl phthalate in aqueous solutions for sensor applications," Journal of Optical Technology. 90(10), 630-636 (2023). https://doi.org/10.1364/JOT.90.000630
Abstract:

Subject and purpose of the study. The subject of the study is the quantitative and qualitative features of the complex formation of nanoparticles of metallic silver and phthalates. The purpose of this work was to determine the conditions for the formation of stable complexes of silver nanoparticles with dibutyl phthalate in an aqueous solution. To achieve the goal a full cycle of comparative studies of silver nanoparticles has been carried out from synthesis to establishing the possibility of binding dibutyl phthalate for further creation of an accessible sensor based on them for determination of various phthalates in water. Methods. Chemical methods were used for the synthesis of nanoparticles, the modification of their surface with nucleotides, and the connection of nanoparticles with phthalates. To study the interaction of silver nanoparticles with each component of organo­inorganic complex, namely sodium citrate (hereinafter referred to as citrate), uridine­5ў­triphosphate (hereinafter referred to as uridine or UTP), copper ions (Cu2+) and dibutyl phthalate (DBP), methods of optical spectroscopy and transmission electron microscopy were used. Main results. Metallic silver nanoparticles have been synthesized using four agents safe for humans, acting simultaneously as a reducing agent and stabilizer (citrate, polyethylene glycol, polyvinylpyrrolidone, orange extract). Nanoparticles, synthesized using sodium citrate, were selected for further use as phthalate sensors in terms of stability parameters and range of research methods. The change of the silver nanoparticles’ ligand shell by uridine molecules and the formation of chemical bonds between them and phthalate involving copper ions have been shown. Raman spectra and transmission electron microscopy images of Ag/UTP­Cu2+­DBP complexes were obtained for the first time, confirming the chemical bonding of silver nanoparticles and phthalates. The optimal molar ratio of Ag/UTP nanoparticles and copper ions in solution for the subsequent process of complex formation has been found. Practical significance. The formation of complexes between dibutyl phthalate and modified silver nanoparticles has been shown for the first time in the absence of alcohol and any buffer solutions. The detection of phthalates using silver nanoparticles is a promising technology for creating a simple nanosensor with additional plasmonic and antibacterial properties. Besides the extremely important ecological significance of the study of hybrid systems based on Ag nanoparticles, it also contributes to the development of methods for passivation of the surface of metal nanoparticles. In a broad sense, the studies carried out are of interest for the development of sensor detection technologies for organic­inorganic compounds.

Keywords:

plasmonic silver nanoparticles, dibutyl phthalate nanosensors in liquid media, Raman spectra, transmission electron microscopy, surface modification, uridine 5'­triphosphate, divalent copper ions

OCIS codes: 280.4788, 300.6450, 240.6680

References:
  1. Toxicological profile for di­n­butyl phthalate. Atlanta: Agency for toxic substances and disease registry, 2001. 225 p. [Electronic resource]. Access mode: https://www.atsdr.cdc.gov/toxprofiles/tp135.pdf, free. English. (date of the application 1.03.2023)
  2. Dutta S., Haggerty D.K., Rappolee D.A., Ruden D.M. Phthalate exposure and long­term epigenomic consequences: A Review // Front Genet. 2020. V. 11. P. 405. https://www.doi.org/10.3389/fgene.2020.00405
  3. Maystrenko V.N., Klyuev N.A. Ecological and analytical monitoring of persistent organic pollutants. M.: Binom. Knowledge Laboratory, 2012. 323 p.
  4. Kulagina A.S., Danilov V.V., Shilov V.B. Water­soluble InP/ZnS QDs as dibutyl phthalate markers. The influence of alcohol on the solubility of phthalates // Opt. Spectrosc. 2021. V. 129. № 12. P. 1341–1345. https://www.doi.org/10.1134/S0030400X21060072
  5. Bošnir J., Puntarić D., Galić A., Škes I., Dijanić T., Klarić M., Grgić M., Curković M., Šmit Z. Migration of phthalates from containers into drinks and mineral water // Food Technol. Biotechnol. 2007. V. 45. № 1. P. 91–95.
  6. "MUK 4.1.3484­17. 4.1. Control methods. Chemical factors. Determination of phthalates (dimethyl phthalate, diethyl phthalate, dimethyl terephthalate, dibutyl phthalate, di (2­ethylhexyl) phthalate, dioctyl phthalate) in alcoholic products by chromato­mass spectrometry. Guidelines" (approved by Rospotrebnadzor on September 20, 2017). 20 p.
  7. Polyvinylpyrrolidone. Food safety commission of Japan: Risk assessment report — Food additives, 2013. 2 p. [Electronic resource]. Access mode: https://www.fsc.go.jp/english/evaluationreports/foodadditive/polyvinylpyrroridone_fs630.pdf, free. English (date of the application 1.03.2023)
  8. Doty R.Ch., Tshikhudo T.R., Brust M., Fernig D.G. Extremely stable water­soluble Ag nanoparticles // Chem. Mater. 2005. V. 17. № 18. P. 4630–4635. https://www.doi.org/10.1021/cm0508017
  9. Li W., Guo Y., Zhang P. SERS­active silver nanoparticles prepared by a simple and green method // The J. of Phys. Chem. C. 2010. V. 114. № 14. P. 6413–6417. https://www.doi.org/10.1021/jp100526v
  10. Hyllested J.A., Palanco M.E., Hagen N., Mogensen K.B., Kneipp K. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents // Beilstein J. Nanotechnol. 2015. V. 6. P. 293–299. https://www.doi.org/10.3762/bjnano.6.27
  11. Rodríguez­León E., Iñiguez­Palomares R., Navarro R.E., Herrera­Urbina R., Tanori J., Iñiguez­Palomares C., Maldonado A. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts) // Nanoscale Res. Lett. 2013. V. 8. P. 318. https://www.doi.org/10.1186/1556­276X­8­318
  12. Evstropiev S.K., Nikonorov N.V., Saratovskii A.S., Dukelskii K.V., Vasiliev V.N., Karavaeva A.V., Soshnikov I.P. Photo­stimulated evolution of different structural forms of silver in solutions, composite and oxide coatings. // Journal of photochemistry and photobiology A: Photochemistry. 2020. V. 403. P. 112858. https://doi.org/10.1016/j.jphotochem.2020.112858
  13. Li H., Xia H., Wang D., Tao X. Simple synthesis of monodisperse, quasi­spherical, citrate­stabilized silver nanocrystals in water // Langmuir. 2013. V. 29. № 16. P. 5074–5079. https://www.doi.org/10.1021/la400214x
  14. Decision on the application of sanitary measures in the Eurasian Economic Union. Eurasian Economic Community, 2010. 2348 p. [Electronic resource]. Access mode: https://fsvps.gov.ru/fsvps­docs/ru/files/v­sfere­federalnogo­gosudarstvennogo­veterinarnogo­nadzora/normativnye­dokumenty/2­reshenie­komissii­tamozhennogo­soyuza­ot­28­05­2010­299­o­primenenii­sanitarnyh­mer.pdf, free. Russian (date of the application 1.03.2023).
  15. Stolyarchuk M.V., Sidorov A.I. Electronic absorption spectra of neutral and charged silver molecular clusters // Opt. Spectrosc. 2018. V. 125. № 3. P. 305–310. https://www.doi.org/10.1134/S0030400X18090229
  16. Turkevich J., Stevenson P.S., Hiller J. A Study of the nucleation and growth processes in the synthesis of colloidal gold // Faraday Soc. 1951. V. 11. P. 55–75. https://www.doi.org/10.1039/DF9511100055
  17. Krajczewski J., Joubert V., Kudelski A. Light­induced transformation of citrate­stabilized silver nanoparticles: photochemical method of increase of SERS activity of silver colloids // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2014. V. 456. P. 41–48. https://www.doi.org/10.1016/j.colsurfa.2014.05.005
  18. Baca S.G., Filippova I.G., Gherco O.A., Gdaniec M., Simonov Yu.A., Gerbeleu N.V., Franz P., Basler R., Decurtins S. Nickel(II)­, cobalt(II)­, copper(II)­, and zinc(II)­phthalate and 1­methylimidazole coordination compounds: synthesis, crystal structures and magnetic properties // Inorganica Chimica Acta. 2004. V. 357. № 12. P. 3419–3429.
  19. Helmut S., Naumann C.F., Prijs B.A. Comparison on the coordination tendency towards Cu2+ of the base moieties in guanosine, inosine and adenosine 5'­triphosphates // Eur. J. Biochem. 1974. V. 46. P. 589–593. https://www.doi.org/10.1111/j.1432­1033.1974.tb03654.x
  20. Lomozik L., Jastrzab R. Non­covalent and coordination interactions in Cu(II) systems with uridine, uridine 59­monophosphate and triamine or tetramine as biogenic amine analogues in aqueous solutions // Journal of Inorganic Biochemistry. 2003. V. 97. P. 179–190. https://www.doi.org/10.1016/S0162­0134(03)00276­9
  21. Storhoff J.J., Elghanian R., Mirkin C.A., Letsinger R.L. Sequence­dependent stability of DNA­modified gold nanoparticles // Langmuir. 2002. V. 18. № 17. P. 6666–6670. https://doi.org/10.1021/la0202428
  22. Satyavolu N.S.R., Loh K.Y., Tan L.H., Lu Y. Discovery of and insights into DNA “Codes” for tunable morphologies of metal nanoparticles // Small. 2019. V. 15. P. 1900975. https://doi.org/10.1002/smll.201900975
  23. Zhang M., Liu Yu­Q., Ye B.­Ce. Rapid and sensitive colorimetric visualization of phthalates using UTP­modified gold nanoparticles cross­linked by copper(II) // Chem. Commun. 2011. V. 47. P. 11849–11851. https://www.doi.org/10.1039/c1cc14772b
  24. García M.A. Surface plasmons in metallic nanoparticles: fundamentals and applications // Journal of Physics D: Applied Physics. 2011. V. 44. № 28. P. 283001. https://doi.org/10.1088/0022­3727/44/28/283001
  25. Cai Y., Piao X., Gao W., Zhang Z., Nie E., Sun Z. Large­scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen // RSC Adv. 2007. V. 7. P. 34041. https://www.doi.org/10.1039/C7RA05125E
  26. Mukherjee P., Roy M., Mandal B.P., Dey G.K., Mukherjee P.K., Ghatak J., Tyagi A.K., Kale S.P. Green synthesis of highly stabilized nanocrystalline silver particles by a non­pathogenic and agriculturally important fungus T. Asperellum // Nanotechnology. 2008. V. 19. P. 075103–075110. https://doi.org/10.1088/0957­4484/19/7/075103
  27. Tingzhu J., Zhang W., Li N., Liu X., Han L., Dai W. Surface characterization and corrosion behavior of 90/10 copper­nickel alloy in marine environment // Materials. 2019. V. 12. P. 1869. https://www.doi.org/10.3390/ma12111869