ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-10-13-23

УДК: 621.391.64

Use of holographic methods of image transmission over multimode optical fiber to increase the bandwidth of fiber-optic communication lines

For Russian citation (Opticheskii Zhurnal):

Тимофеев А.Л., Султанов А.Х., Мешков И.К., Гизатулин А.Р. Использование голографических методов передачи изображений по многомодовому оптическому волокну для повышения пропускной способности волоконно­-оптических линий связи // Оптический журнал. 2023. Т. 90. № 10. С. 13–23. http://doi.org/10.17586/1023­-5086­-2023­-90­-10-­13­-23

 

Timofeev A.L., Sultanov A.H., Meshkov I.K., Gizatulin A.R. Use of holographic methods of image transmission over multimode optical fiber to increase the bandwidth of fiber­optic communication lines [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 10. P. 13–23. http://doi.org/10.17586/1023­5086­2023­90­10­13­23

 

For citation (Journal of Optical Technology):

A. L. Timofeev, A. H. Sultanov, I. K. Meshkov, and A. R. Gizatulin, "Holographic methods of image transmission over multimode optical fiber for increased bandwidth of fiber-optic communication lines," Journal of Optical Technology. 90(10), 569-574 (2023).  https://doi.org/10.1364/JOT.90.000569

Abstract:

Subject of study. The possibility of digital data transmission in the form of a hologram over a multimode fiber was investigated. The aim of the study is to improve the transmission rate of digital information in the form of images over the multimode fiber by providing higher resistance to modal dispersion. Method. To transmit digital information over the multimode fiber the transmitted digital block is associated with a digital hologram, for the construction of which the representation of the input digital block by the coordinates of a luminous point on the plane is used. The hologram of  that kind of object is a Fresnel zone plate with center coordinates determined by the input data block. The hologram image is transmitted in a multimode mode. To restore the value of the original array on the receiving side the hologram obtained at the output of the fiber shall be retransformed. This can be done optically by creating an interference pattern in the plane of the photoreceiving matrix and determining the coordinates of the brightest point. The digital method of restoring the original data block is processing the image of the received hologram fixed by the photodetector matrix. Main results. It is shown that the methods of image transmission over the multimode fiber can be used to transmit arbitrary digital information. The problem of the modal dispersion and other types of distortions that occur during transmission over fiber is solved by using the hologram instead of the image. Practical significance. When transmitting information in the form of a 32x32 hologram, from 10 to 40 bits are transmitted per cycle. It means that the information transmission rate over multimode fiber increases  10–40 times compared to single­mode transmission.

Keywords:

image transmission, multimode fiber, digital holography, modal dispersion

OCIS codes: 060.0060, 090.0090, 060.2330

References:
  1. Lidia Galdino L., Edwards A., Yi W., Sillekens E., Wakayama Y., Gerard T., Pelouch W.S., Barnes S., Tsuritani T., Killey R.I., Lavery D., Bayvel P. Optical fibre capacity optimisation via continuous bandwidth amplification and geometric shaping // IEEE Photonics Technology Letters. 2020. V. 32. № 17. P. 1021–1024. https://doi.org/ 10.1109/LPT.2020.3007591
  2. Grigor'eva E.E., Semenov A.T. Waveguide image transmission in coherent light (review) // Soviet Journal of Quantum Electronics. 1978. V. 8. № 9. P. 1063–1081.
  3. Richardson D.J., Fini J.M., Nelson L.E. Space­division multiplexing in optical fibres // Nature Photonics. 2013. V. 7. № 5. P. 354–362. https://doi.org/ 10.1038/nphoton.2013.94
  4. Wright L.G., Christodoulides D.N., Wise F.W. Controllable spatiotemporal nonlinear effects in multimode fibres // Nature Photonics. 2015. V. 9. P. 306–310. https://doi.org/ 10.1038/nphoton.2015.61
  5. Cizmar T., Dholakia K. Exploiting multimode waveguides for pure fiber­based imaging // Nature Communication. 2012. V. 3. P. 1027. https://doi.org/10.1038/ncomms2024
  6. Choi Y., Yoon C., Kim M., Yang T.D., Fang­Yen C., Dasari R.R., Lee K.J., Choi W. Scanner­free and wide­field endoscopic imaging by using a single multimode optical fiber // Physical Review Letters. 2012. V. 109. № 20. P. 37–51. https://doi.org/10.1103/PhysRevLett.109.203901
  7. Turtaev S., Leite I.T., Altwegg­Boussac T., Pakan J.M., Rochefort N.L., Cizmar T. High­fidelity multimode fibre­based endoscopy for deep brain in vivo imaging // Light: Science and Applications. 2018. V. 7. № 1. P. 7–92. https://doi.org/10.1038/s41377­018­0094­x
  8. Resisi S., Popoff S. M., Bromberg Y. Image transmission through a dynamically perturbed multimode fiber by deep learning // Laser & Photonics Reviews. 2021. № 10. https://doi.org/10.48550/arXiv.2011.05144
  9. Lucesoli A., Rozzi T. Image transmission by multimode optical fiber for microendoscopy // Proc. of SPIE­OSA Biomedical Optics. 2007. SPIE V. 6631. 663117. P. 245–253. doi: 10.1117/12.728092
  10. Caramazza P., Moran O., Murray­Smith R., Faccio D. Transmission of natural scene images through a multimode fibre // Nature Communications. 2019. V. 10. № 2029. P. 373 – 379. https://doi.org/10.1038/s41467­019­10057­8
  11. Fertman A., Yelin D. Image transmission through an optical fiber using real­time modal phase restoration // Journal of the Optical Society of America B. 2013. V. 30. № 1. P. 149–157. https://doi.org/10.1364/JOSAB.30.000149
  12. Bailey D., Wright E. Practical fiber optics. Oxford: Elsevier. IDC Technologies, 2003. 245 p.
  13. Ho K., Kahn J. Mode coupling and its impact on spatially multiplexed systems. Optical Fiber Telecommunications VIB: Systems and Networks: Sixth Edition. Oxford: Elsevier, 2013. P. 491–568. https://doi.org/10.1016/B978­0­12­396960­6.00011­0
  14. Barankov R., Mertz J. High­throughput imaging of self­luminous objects through a single optical fibre // Nature Communications. 2014. V. 5. № 5581. P. 73–88. https://doi.org/10.1038/ncomms6581
  15. Feschenko V.S., Rogojnikova O.A. Optical imaging system with waveguide // Optics and Spectroscopy. 2004. V. 97. № 3. P. 498–501.
  16. Baharev M.A., Kotlyar V.V., Pavelyev V.S., Soifer V.A., Honina S.N. Efficient excitation of mode packets in an ideal gradient waveguide with given phase velocities // Computer optics. 1997. № 17. P. 21–25.
  17. Liu C., Deng L., Liu D., Su L. Modeling of a single multimode fiber imaging system // arXiv:1607.07905 [physics.optics]. https://doi.org/10.48550/arXiv.1607.07905
  18. Kakkava E., Rahmanib B., Borhania N., Tegina U., Loterieb D., Konstantinoub G., Moserb C., Psaltis D. Imaging through multimode fibers using deep learning: The effects of intensity versus holographic recording of the speckle pattern // Optical Fiber Technology. 2019. V. 52101985. P. 117–129. https://doi.org/10.1016/j.yofte.2019.101985
  19. Borhani N., Kakkava E., Moser C., Psaltis D. Learning to see through multimode fibers // Optica. 2019 V. 5. № 8. P. 960–966. https://doi.org/10.1364/OPTICA.5.000960
  20. Fan P., Zhao T., Su L. Deep learning the high variability and randomness inside multimode fibres // arXiv:1807.09351 [physics.optics]. https://doi.org/10.48550/arXiv.1807.09351
  21. Rahmani B., Loterie D., Konstantinou G., Psaltis D., Moser C. Multimode optical fiber transmission with a deep learning network // Nature. Light Appl. 2018. V. 7. № 69. P. 171–182. https://doi.org/10.1038/s41377­018­0074­1
  22. Takagi R., Horisaki R., Tanida J. Object recognition through a multi­mode fiber // Opt Rev. 2017. № 24. P. 117–120. https://doi.org/10.1007/s10043­017­0303­5
  23. Pauwels, J., Van der Sande G., Verschaffelt G. Space division multiplexing in standard multi­mode optical fibers based on speckle pattern classification // Sci Rep. 2019. V. 9. P. 17597. https://doi.org/10.1038/s41598­019­53530­6
  24. Lei Y., Li J., Fan Y., Yu D., Fu S., Yin F., Dai Y., Xu K. Space­division­multiplexed transmission of 3ґ3 multiple­input multiple­output wireless signals over conventional graded­index multimode fiber // Opt. Express. 2016. № 24. P. 28372–28382. https://doi.org/10.1364/OE.24.028372
  25. Mohapatra H., Hosain S. Intermodal dispersion free few­mode (quadruple mode) fiber: A theoretical modelling // Opt. Commun. 2013. № 30. P. 267–270. https://doi.org/10.1016/j.optcom.2013.05.018
  26. Kubota H., Morioka T. Few­mode optical fiber for mode­division multiplexing // Opt. Fiber Technol. 2011. V. 17. P. 490–494. https://doi.org/10.1016/j.yofte.2011.06.011
  27. Timofeev A.L., Sultanov A.Kh. Holographic method of error­correcting coding // Proc. SPIE 11146. Optical Technologies for Telecommunications. 2019. V. 111461A. P. 171–182. https://doi.org/10.1117/12.2526922
  28. Timofeev A.L., Sultanov A.Kh., Filatov P.E. Holographic method for storage of digital information // Proc. SPIE 11516. Optical Technologies for Telecommunications. 2020. V. 1151604. https://doi.org/10.1117/12.2566329
  29. Timofeev A.L., Sultanov A.Kh. Building a noisetolerant code based on a holographic representation of arbitrary digital information // Computer Optics. 2020. V. 44. № 6. P. 978–984. https://doi.org/10.18287/2412­6179­CO­739
  30. Timofeev A.L., Sultanov A.Kh., Meshkov I.K., Gizatulin A.R. Increasing the range of atmospheric optical communication lines using positional coding // Journal of Optical Technology. 2022. V. 89. № 9. P. 555–561. https://doi.org/10.1364/JOT.89.000555
  31. Leonardo R.D., Bianchi S. Hologram transmission through multi­mode optical fibers // Opt. Express. 2011. № 19. P. 247–254. https://doi.org/10.1364/OE.19.000247
  32. Paurisse M., Hanna M., Droun F., Georges P., Bellanger C., Brignon A., Huignard J.P. Phase and amplitude control of a multimode fiber beam by use of digital holography // Opt. Express. 2009. № 17. P. 13000–13008. https://doi.org/10.1364/OE.17.013000
  33. Leonardo R.D., Ianni F., Ruocco G. Computer generation of optimal holograms for optical trap arrays // Opt. Express. 2007. № 15. P. 1913–1922. https://doi.org/10.1364/OE.15.001913
  34. Grier D.G. A revolution in optical manipulation // Nature. 2003. № 424. P. 810–816. https://doi.org/10.1038/nature01935
  35. Spalding G.C., Courtial J., Leonardo R.D. Holographic optical tweezers // Structured Light Its Applications. Academic Press. 2008. P. 139–168. https://doi.org/10.1016/B978­0­12­374027­4.00006­2
  36. Reicherter M., Haist T., Wagemann E.U., Tiziani H.J. Optical particle trapping with computer­generated holograms written on a liquid­crystal display // Opt. Lett. 1999. № 24. P. 608–610. https://doi.org/10.1364/OL.24.000608