DOI: 10.17586/1023-5086-2023-90-10-13-23
УДК: 621.391.64
Use of holographic methods of image transmission over multimode optical fiber to increase the bandwidth of fiber-optic communication lines
Full text on elibrary.ru
Publication in Journal of Optical Technology
Тимофеев А.Л., Султанов А.Х., Мешков И.К., Гизатулин А.Р. Использование голографических методов передачи изображений по многомодовому оптическому волокну для повышения пропускной способности волоконно-оптических линий связи // Оптический журнал. 2023. Т. 90. № 10. С. 13–23. http://doi.org/10.17586/1023-5086-2023-90-10-13-23
Timofeev A.L., Sultanov A.H., Meshkov I.K., Gizatulin A.R. Use of holographic methods of image transmission over multimode optical fiber to increase the bandwidth of fiberoptic communication lines [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 10. P. 13–23. http://doi.org/10.17586/10235086202390101323
A. L. Timofeev, A. H. Sultanov, I. K. Meshkov, and A. R. Gizatulin, "Holographic methods of image transmission over multimode optical fiber for increased bandwidth of fiber-optic communication lines," Journal of Optical Technology. 90(10), 569-574 (2023). https://doi.org/10.1364/JOT.90.000569
Subject of study. The possibility of digital data transmission in the form of a hologram over a multimode fiber was investigated. The aim of the study is to improve the transmission rate of digital information in the form of images over the multimode fiber by providing higher resistance to modal dispersion. Method. To transmit digital information over the multimode fiber the transmitted digital block is associated with a digital hologram, for the construction of which the representation of the input digital block by the coordinates of a luminous point on the plane is used. The hologram of that kind of object is a Fresnel zone plate with center coordinates determined by the input data block. The hologram image is transmitted in a multimode mode. To restore the value of the original array on the receiving side the hologram obtained at the output of the fiber shall be retransformed. This can be done optically by creating an interference pattern in the plane of the photoreceiving matrix and determining the coordinates of the brightest point. The digital method of restoring the original data block is processing the image of the received hologram fixed by the photodetector matrix. Main results. It is shown that the methods of image transmission over the multimode fiber can be used to transmit arbitrary digital information. The problem of the modal dispersion and other types of distortions that occur during transmission over fiber is solved by using the hologram instead of the image. Practical significance. When transmitting information in the form of a 32x32 hologram, from 10 to 40 bits are transmitted per cycle. It means that the information transmission rate over multimode fiber increases 10–40 times compared to singlemode transmission.
image transmission, multimode fiber, digital holography, modal dispersion
OCIS codes: 060.0060, 090.0090, 060.2330
References:- Lidia Galdino L., Edwards A., Yi W., Sillekens E., Wakayama Y., Gerard T., Pelouch W.S., Barnes S., Tsuritani T., Killey R.I., Lavery D., Bayvel P. Optical fibre capacity optimisation via continuous bandwidth amplification and geometric shaping // IEEE Photonics Technology Letters. 2020. V. 32. № 17. P. 1021–1024. https://doi.org/ 10.1109/LPT.2020.3007591
- Grigor'eva E.E., Semenov A.T. Waveguide image transmission in coherent light (review) // Soviet Journal of Quantum Electronics. 1978. V. 8. № 9. P. 1063–1081.
- Richardson D.J., Fini J.M., Nelson L.E. Spacedivision multiplexing in optical fibres // Nature Photonics. 2013. V. 7. № 5. P. 354–362. https://doi.org/ 10.1038/nphoton.2013.94
- Wright L.G., Christodoulides D.N., Wise F.W. Controllable spatiotemporal nonlinear effects in multimode fibres // Nature Photonics. 2015. V. 9. P. 306–310. https://doi.org/ 10.1038/nphoton.2015.61
- Cizmar T., Dholakia K. Exploiting multimode waveguides for pure fiberbased imaging // Nature Communication. 2012. V. 3. P. 1027. https://doi.org/10.1038/ncomms2024
- Choi Y., Yoon C., Kim M., Yang T.D., FangYen C., Dasari R.R., Lee K.J., Choi W. Scannerfree and widefield endoscopic imaging by using a single multimode optical fiber // Physical Review Letters. 2012. V. 109. № 20. P. 37–51. https://doi.org/10.1103/PhysRevLett.109.203901
- Turtaev S., Leite I.T., AltweggBoussac T., Pakan J.M., Rochefort N.L., Cizmar T. Highfidelity multimode fibrebased endoscopy for deep brain in vivo imaging // Light: Science and Applications. 2018. V. 7. № 1. P. 7–92. https://doi.org/10.1038/s413770180094x
- Resisi S., Popoff S. M., Bromberg Y. Image transmission through a dynamically perturbed multimode fiber by deep learning // Laser & Photonics Reviews. 2021. № 10. https://doi.org/10.48550/arXiv.2011.05144
- Lucesoli A., Rozzi T. Image transmission by multimode optical fiber for microendoscopy // Proc. of SPIEOSA Biomedical Optics. 2007. SPIE V. 6631. 663117. P. 245–253. doi: 10.1117/12.728092
- Caramazza P., Moran O., MurraySmith R., Faccio D. Transmission of natural scene images through a multimode fibre // Nature Communications. 2019. V. 10. № 2029. P. 373 – 379. https://doi.org/10.1038/s41467019100578
- Fertman A., Yelin D. Image transmission through an optical fiber using realtime modal phase restoration // Journal of the Optical Society of America B. 2013. V. 30. № 1. P. 149–157. https://doi.org/10.1364/JOSAB.30.000149
- Bailey D., Wright E. Practical fiber optics. Oxford: Elsevier. IDC Technologies, 2003. 245 p.
- Ho K., Kahn J. Mode coupling and its impact on spatially multiplexed systems. Optical Fiber Telecommunications VIB: Systems and Networks: Sixth Edition. Oxford: Elsevier, 2013. P. 491–568. https://doi.org/10.1016/B9780123969606.000110
- Barankov R., Mertz J. Highthroughput imaging of selfluminous objects through a single optical fibre // Nature Communications. 2014. V. 5. № 5581. P. 73–88. https://doi.org/10.1038/ncomms6581
- Feschenko V.S., Rogojnikova O.A. Optical imaging system with waveguide // Optics and Spectroscopy. 2004. V. 97. № 3. P. 498–501.
- Baharev M.A., Kotlyar V.V., Pavelyev V.S., Soifer V.A., Honina S.N. Efficient excitation of mode packets in an ideal gradient waveguide with given phase velocities // Computer optics. 1997. № 17. P. 21–25.
- Liu C., Deng L., Liu D., Su L. Modeling of a single multimode fiber imaging system // arXiv:1607.07905 [physics.optics]. https://doi.org/10.48550/arXiv.1607.07905
- Kakkava E., Rahmanib B., Borhania N., Tegina U., Loterieb D., Konstantinoub G., Moserb C., Psaltis D. Imaging through multimode fibers using deep learning: The effects of intensity versus holographic recording of the speckle pattern // Optical Fiber Technology. 2019. V. 52101985. P. 117–129. https://doi.org/10.1016/j.yofte.2019.101985
- Borhani N., Kakkava E., Moser C., Psaltis D. Learning to see through multimode fibers // Optica. 2019 V. 5. № 8. P. 960–966. https://doi.org/10.1364/OPTICA.5.000960
- Fan P., Zhao T., Su L. Deep learning the high variability and randomness inside multimode fibres // arXiv:1807.09351 [physics.optics]. https://doi.org/10.48550/arXiv.1807.09351
- Rahmani B., Loterie D., Konstantinou G., Psaltis D., Moser C. Multimode optical fiber transmission with a deep learning network // Nature. Light Appl. 2018. V. 7. № 69. P. 171–182. https://doi.org/10.1038/s4137701800741
- Takagi R., Horisaki R., Tanida J. Object recognition through a multimode fiber // Opt Rev. 2017. № 24. P. 117–120. https://doi.org/10.1007/s1004301703035
- Pauwels, J., Van der Sande G., Verschaffelt G. Space division multiplexing in standard multimode optical fibers based on speckle pattern classification // Sci Rep. 2019. V. 9. P. 17597. https://doi.org/10.1038/s41598019535306
- Lei Y., Li J., Fan Y., Yu D., Fu S., Yin F., Dai Y., Xu K. Spacedivisionmultiplexed transmission of 3ґ3 multipleinput multipleoutput wireless signals over conventional gradedindex multimode fiber // Opt. Express. 2016. № 24. P. 28372–28382. https://doi.org/10.1364/OE.24.028372
- Mohapatra H., Hosain S. Intermodal dispersion free fewmode (quadruple mode) fiber: A theoretical modelling // Opt. Commun. 2013. № 30. P. 267–270. https://doi.org/10.1016/j.optcom.2013.05.018
- Kubota H., Morioka T. Fewmode optical fiber for modedivision multiplexing // Opt. Fiber Technol. 2011. V. 17. P. 490–494. https://doi.org/10.1016/j.yofte.2011.06.011
- Timofeev A.L., Sultanov A.Kh. Holographic method of errorcorrecting coding // Proc. SPIE 11146. Optical Technologies for Telecommunications. 2019. V. 111461A. P. 171–182. https://doi.org/10.1117/12.2526922
- Timofeev A.L., Sultanov A.Kh., Filatov P.E. Holographic method for storage of digital information // Proc. SPIE 11516. Optical Technologies for Telecommunications. 2020. V. 1151604. https://doi.org/10.1117/12.2566329
- Timofeev A.L., Sultanov A.Kh. Building a noisetolerant code based on a holographic representation of arbitrary digital information // Computer Optics. 2020. V. 44. № 6. P. 978–984. https://doi.org/10.18287/24126179CO739
- Timofeev A.L., Sultanov A.Kh., Meshkov I.K., Gizatulin A.R. Increasing the range of atmospheric optical communication lines using positional coding // Journal of Optical Technology. 2022. V. 89. № 9. P. 555–561. https://doi.org/10.1364/JOT.89.000555
- Leonardo R.D., Bianchi S. Hologram transmission through multimode optical fibers // Opt. Express. 2011. № 19. P. 247–254. https://doi.org/10.1364/OE.19.000247
- Paurisse M., Hanna M., Droun F., Georges P., Bellanger C., Brignon A., Huignard J.P. Phase and amplitude control of a multimode fiber beam by use of digital holography // Opt. Express. 2009. № 17. P. 13000–13008. https://doi.org/10.1364/OE.17.013000
- Leonardo R.D., Ianni F., Ruocco G. Computer generation of optimal holograms for optical trap arrays // Opt. Express. 2007. № 15. P. 1913–1922. https://doi.org/10.1364/OE.15.001913
- Grier D.G. A revolution in optical manipulation // Nature. 2003. № 424. P. 810–816. https://doi.org/10.1038/nature01935
- Spalding G.C., Courtial J., Leonardo R.D. Holographic optical tweezers // Structured Light Its Applications. Academic Press. 2008. P. 139–168. https://doi.org/10.1016/B9780123740274.000062
- Reicherter M., Haist T., Wagemann E.U., Tiziani H.J. Optical particle trapping with computergenerated holograms written on a liquidcrystal display // Opt. Lett. 1999. № 24. P. 608–610. https://doi.org/10.1364/OL.24.000608