ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-10-35-47

УДК: 535+778.38; 069; 528.7

Quality control of the diffraction structure of display reflection holograms

For Russian citation (Opticheskii Zhurnal):

Рабош Е.В., Балбекин Н.С., Андреева О.В., Петров Н.В. Контроль качества дифракционной структуры изобразительных голограмм отражательного типа // Оптический журнал. 2023. Т. 90. № 10. С. 35–47. http://doi.org/10.17586/1023­-5086­-2023-­90-­10-­35-­47

 

Rabosh E.V., Balbekin N.S., Andreeva O.V., Petrov N.V. Quality control of the diffraction structure of display reflection holograms [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 10. P. 35–47. http://doi.org/10.17586/1023­5086­2023­90­10­35­47

 

 

 

For citation (Journal of Optical Technology):

E. V. Rabosh, N. S. Balbekin, O. V. Andreeva, and N. V. Petrov, "Quality control of the diffraction structure of display reflection holograms," Journal of Optical Technology . 90(10), 582-589 (2023). https://doi.org/10.1364/JOT.90.000582

Abstract:

Subject of study. An archival storage of information in the diffraction structure of display reflection holograms. Aim of study. A development of approaches for assessing the quality of diffraction structure of display holograms recorded according to the scheme of Yu. N. Denisyuk relating to solving the problem of display holograms quality control and their diffraction structure during operation and long­term storage. Method. The methods for estimating the quality of an optical image, which can be used in estimating the parameters of a holographic image characterizing the diffraction structure properties, are discussed. Main results. The differences in the formation of the diffraction structure of monochrome and color display holograms are considered. It was experimentally shown that if a 30x40 cm hologram recorded on high­resolution Ultimate 04C halide­silver photomaterial for recording the full­color holograms is exposed to actinic radiation in a wide range of visible spectrum at illumination level not less than 1300 lux for 25 thousand and more hours, then the diffraction structure of the hologram degrades, namely the contrast of the reconstructed holographic image is reduced by 20%. A quantitative comparison of photographs of holographic images was carried out based on the calculation of the average contrast value. The authors of the article emphasize the importance of developing the methods for quantifying the wave field of an arbitrary­shaped object reconstructed with display holograms. It is proposed to use the photogrammetry method, tested by a team of authors, when characterizing the holographic images in the absence of a real object. An algorithm for analog­to­digital conversion of information contained in the display hologram applicable to control changes in the parameters of the holographic image both under external influence and during their storage is presented. Practical Significance. The technique for controlling the parameters of the holographic image is a necessary tool for solving the issues of archival storage of holographic images in the diffraction structure of the display reflection holograms. The algorithm presented in the article and the optical scheme of its implementation can be used to assess the quality of the display hologram and its diffraction structure during the storage and operation.

Keywords:

display holography, archival storage, diffraction structure, object wave, holographic image, photogrammetry

OCIS codes: 110.6895, 090.2900, 100.1160, 100.2960, 090.1705, 040.1490

References:
  1. Denisyuk Yu.N. On the mapping of the optical properties of an object in the wave field of radiation scattered by it // Doklady Academii Nauk SSSR. 1962. V. 144. № 6. P. 1275–1278.
  2. Denisyuk Y.N., Protas I.R. Improved lippman photographic plates for recording stationary light waves [in Russian] // Optics and Spectroscopy. 1963. V. 14. P. 381.
  3. Caulfield H.J. Handbook of optical holography. New York: Academic Press, 1979. V. 2. 639 p.
  4. GOST R 59321.2­2021 “Optics and photonics. Holography. Part 2. Analog holography. Terms and definitions”. URL: https://protect.gost.ru/document1.aspx?control=31&baseC=6&page=2&month=11&year=2021&search=&id=241508 [in Russian]. (Last accessed Mar. 25, 2023).
  5. Gentet Y., Shevtsov M.K. Mobile holographic camera for recording color holograms [in Russian] // Journal of Optical Technology. 2009. V. 76. № 7. P. 399–401. https://doi.org/10.1364/JOT.76.000399
  6. Optical Museum. St. Petersburg. URL: https://optimus.itmo.ru/. [in Russian]. (Last accessed Mar. 25, 2023]).
  7. Denisyuk Y.N. Collection of selected articles on holography [in Russian] // Proceedings of the Vavilov State Optical Institute. 1988. V. 68. № 202. P. 265.
  8. Caulfield H.J. Handbook of optical holography. New York: Academic Press, 1979. V. 1. № 2. 639 p.
  9. Kogelnik H. Coupled wave theory for thick hologram gratings // The bell system technical journal. 1969. V. 48. № 9. P. 2909–2947.
  10. Collier R., Burkhart C.B., Lin L.H. Optical holography. The MIT Press, 1971. 624 p.
  11. Kirillov N.I. High­resolution photographic materials for holography and methods of processing them [in Russian]. Moscow: Izdatel Nauka, 1979. P. 16–24.
  12. Zakharov Y.N. Reconstructing pseudo­color images when Denisyuk holograms are recorded monochromatically // Journal of Optical Technology. 2009. V. 76. № 7. P. 449–451. https://doi.org/10.1364/JOT.76.000449
  13. Markov V.B., Khizhnyak A.I. Spectral­angular selectivity of reflection holograms [in Russian] // Technical Physics Letters. 1996. V. 22. № 9. P. 18–23.
  14. Andreeva O.V., Andreeva N.V., Kuzmina T.B. Plasmonic particles of colloidal silver in high­resolution recording media // Optics and Spectroscopy. 2017. V. 122. № 1. P. 52–58. https://doi.org/10.1134/S0030400X17010027
  15. Usanov Y.E., Kosobokova N.L., Tikhomirov G.P. Study of the dependence of the diffraction efficiency of holograms on the sizes of developed silver particles [in Russian] // Optical­mechanical industry. 1977. № 3. P. 15–18.
  16. Andreeva O.V., Bykov E.P., Ismagilov A.O., Pandya A., Shchelkanova I.Yu., Andreeva N.V. Nanoporous silicate matrices for holography and biomedicine // Optics and Spectroscopy. 2021. V. 129. № 4. P. 431–439. https://doi.org/10.1134/S0030400X21040044
  17. Veniaminov A.V., Lashkov G.I., Ratner O.B., Shelekhov N.S., Bandyuk O.V. Holographic relaxometry as a method of studying diffusion processes in polymer recording media [in Russian] // Optics and Spectroscopy. 1986. V. 60. № 1. P. 87–91.
  18. Gentet P., Gentet Y., Lee S.H. Ultimate 04 the new reference for ultra­realistic color holography // 2017 International Conference on Emerging Trends & Innovation in ICT (ICEI). 2017. P. 162–166. https://doi.org/10.1109/ETIICT.2017.7977030
  19. Biro L.P., Vigneron J.P. Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration // Laser & Photonics Reviews. 2011. V. 5. № 1. P. 27–51. https://doi.org/10.1002/lpor.200900018
  20. Han Z., Niu S., Shang C., Liu Z., Ren L. Light trapping structures in wing scales of butterfly Trogonoptera brookiana // Nanoscale. 2012. V. 4. № 9. P. 2879–2883. https://doi.org/10.1039/C2NR12059C
  21. Wilts B.D., Matsushita A., Arikawa K., Stavenga D.G. Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales // Journal of the Royal Society Interface. 2015. V. 12. № 111. P. 20150717. https://doi.org/10.1098/rsif.2015.0717
  22. Lesnichii V.V., Petrov N.V., Cheremkhin P.A. A technique of measuring spectral characteristics of detector arrays in amateur and professional photocameras and their application for problems of digital holography // Optics and Spectroscopy. 2013. V. 115. С. 557–566. https://doi.org/10.1134/S0030400X13100093
  23. James T.H. The theory of the photographic process. New York: Macmillan, 1966. V. 6. 576 p.
  24. Rabosh E.V., Ankushin D.A., Balbekin N.S., Vavilova Yu.A., Timoshenkova A.M., Avdonina E.S., Shlykova T.V., Petrov N.V. Three­dimensional simulation of volume pictorial hologram by photogrammetry method [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2019. V. 19. № 6. P. 1013–1021. https://doi.org/10.17586/2226­1494­2019­19­6­1013­1021
  25. Rabosh E.V., Balbekin N.S., Petrov N.V. Analog­to­digital conversion of information archived in display holograms: I. discussion // J. Opt. Soc. Am. A. 2023. V. 40. № 4. P. B47–B56. https://doi.org/10.1364/JOSAA.478498
  26. Rabosh E.V., Balbekin N.S., Timoshenkova A.M., Shlykova, T.V., Petrov N.V. Analog­to­digital conversion of information archived in display holograms: II. Photogrammetric digitization // J. Opt. Soc. Am. A. 2023. V. 40. № 4. P. B57–B64. https://doi.org/10.1364/JOSAA.478499