ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-10-67-79

УДК: 612.821

Shape deformation in optical illusions

For Russian citation (Opticheskii Zhurnal):
Бондарко В.М., Чихман В.Н. Искажение формы изображений в оптических иллюзиях // Оптический журнал. 2023. Т. 90. № 10. С. 67–79. http://doi.org/10.17586/1023­-5086­-2023-­90­-10-­67­-79  

Bondarko V.M., Chikhman V.N. Shape deformation in optical illusions [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 10. P. 67–79. http://doi.org/10.17586/1023­-5086­-2023­-90­-10­-67­-79  

For citation (Journal of Optical Technology):

V. M. Bondarko and V. N. Chikhman, "Shape deformation in optical illusions," Journal of Optical Technology. 90(10), 601-608 (2023). https://doi.org/10.1364/JOT.90.000601

Abstract:

Subject of study. We studied the mechanisms of optical illusions, in which the shape of the images was deformed. These were the checkerboard illusion, where straight lines appear curved due to white spots on black cells, and the Wundt–Hering illusion, in which straight lines seem curved, when fan lines are superimposed on them. Aim of study is to describe and analyze the mechanisms generating these illusions, compare them and test in experiments. Methods. Psychophysical methods of research were used. A spatial frequency analysis of the images was carried out and the obtained data were compared with the results of studying other illusions. Main results. The estimates of curvature in the checkerboard illusion were obtained for the first time. It has been shown that the checkerboard illusion intensified with image size increasing up to 2 degrees, and then weakened. The results of the experiments are consistent with the data on  optical irradiation phenomenon study, the neurophysiological correlates of which are the receptive fields of neurons of the lateral geniculate body. At the same time, the Wundt–Hering illusion is associated with the tilt illusion caused by the interaction between the spatial frequency channels formed by the receptive fields of cortical neurons. The analysis of other illusions of image shape deformation made it possible to attribute their mechanisms to one of the above types: the influence of optical irradiation or the interaction between orientational spatial frequency channels. Practical significance. The irradiation phenomenon is described by the Naka–Rushton equation in the system of opponent receptive fields neurons. The obtained results can be used in image processing and analysis, as well as in the development of adversarial artificial neural networks, which are analogues of opponent natural neural networks.

Keywords:

optical illusions, curvature, checkerboard illusion, Wundt–Hering illusion, optical irradiation, opponent neural networks

OCIS codes: 330.7326 330.4060 330.5510

References:
  1. Gomez­Villa A., Martín A., Vazquez­Corral J., Bertalmío M. Convolutional neural networks can be deceived by visual illusions // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. P. 12309–12317.
  2. Gomez­Villa A., Martín A., Vazquez­Corral J., Bertalmío M., Malo J. Visual illusions also deceive convolutional neural networks: Analysis and implications // arXiv preprint arXiv:1912.01643.2019. https: //doi.org/10.48550/arXiv.1912.01643
  3. Ward E.J. Exploring perceptual illusions in deep neural networks // https://www.biorxiv.org/content/10.1101/687905v1.2019
  4. Watanabe E., Kitaoka A., Sakamoto K., Yasugi M., Tanaka K. Illusory motion reproduced by deep neural networks trained for prediction // Frontiers in Psychology. 2018. V. 9. P. 345. https://doi.org/10.3389/fpsyg.2018.00345
  5. Bondarko V.M., Bondarko D.V., Solnushkin S.D., Chikhman V.N. Relation between the Wundt–Hering illusion, the tilt illusion, and estimation of length of inclined line projections // Human Physiology. 2019. V. 45. P. 370–377. https://doi.org/10.1134/S0362119719030022
  6. Bondarko V.M., Solnushkin S.D., Chikhman V.N. Curvature estimation and architecture of the Parthenon // Journal of Optical Technology. 2021. V. 88(6). P. 330–336. https://doi.org/10.1364/JOT.88.000330
  7. Todd J.T., Petrov A.A. The many facets of shape // Journal of Vision. 2022. V. 22. № 1. P. 1–12. https://doi.org/10.1167/jov.22.1.1
  8. Baker N., Garrigan P., Kellman P.J. Constant curvature segments as building blocks of 2D shape representation // Journal of Experimental Psychology: General. 2021. V. 150. № 8. P. 1556. https://doi.org/10.1037/xge0001007
  9. Kunsberg B., Zucker S.W. From boundaries to bumps: When closed (extremal) contours are critical // Journal of Vision. 2021. V. 21. № 13. P. 1. https://doi.org/10.1167/jov.21.13.7
  10. Yuille A., Liu C. Deep nets: What have they ever done for vision? // Int. J. Computer Vision. 2021. V. 129. P. 781. https://doi.org/10.1007/s11263­020­01405­z
  11. Yue X., Robert S., Ungerleider L.G. Curvature processing in human visual cortical areas // Neuroimage. 2020. V. 222. P. 117295. https://doi.org/10.1016/j.neuroimage.2020.117295
  12. Blakemore С., Campbell F.W. On the existence in human visual system of neurones selectively sensitive to the orientation and size of retinal image // J. Physiology. 1969. V. 203. № 1. P. 237–260. https://doi.org/10.1113/jphysiol.1969.sp008862
  13. Campbell F.W., Robson J.G. Application of fourier analyses to the visibility of gratings // J. Physiol. 1968. V. 197. P. 551–566. https://doi.org/10.1113/jphysiol.1968.sp008574
  14. Glezer V.D. Vision and mind. St. Petersburg: Nauka, 1993. 285 p. (in Russian)
  15. Shelepin Yu.E., Glezer V.D., Bondarko V.M., Pavlovskaya M.B. et al. Spatial vision // Physiology of vision / Ed. Byzov A.L. M.: Nauka, 1992. P. 528–586. (in Russian)
  16. Lamminpiya A.A., Pronin S.V., Shelepin Y.E. Spatial frequency text filtering for local and global analysis // Journal of Optical Technology. 2018. V. 85. № 8. P. 476–481. https://doi.org/10.1364/JOT.85.000476
  17. Gorbachev V.N., Kazakov A.Y., Savel’eva M.Y. Wavelet transform of a gray­scale image in a finite GF (2) field // Journal of Optical Technology. 2021. V. 88 (2). P. 87–93. https://doi.org/10.1364/JOT.88.000087
  18. Alies M.Y., Antonov E. A., Kalugin A. I., Zaripov M. R. Application of artificial neural networks for the analysis of multispectral images // Journal of Optical Technology. 2021. V. 88(8). P. 441–444. https://doi.org/10.1364/JOT.88.000441
  19. Bulatov A., Bertulis A., Mickiene L. Geometrical illusions: study and modelling // Biol. Cybern. 1997. V. 77. P. 395–406. https://doi.org/10.1007/s004220050399
  20. Bulatov A., Bulatova N., Surkys T., Mickienė L. A quantitative analysis of illusion magnitude changes induced by rotation of contextual distractor // Acta Neurobiol. Exp. (Wars). 2015. V. 75(2). P. 238–251. PMID: 26232999
  21. Hamburger K., Hansen T., Gegenfurtner K.R. Geometric­optical illusions at isoluminance // Vision Res. 2007. V. 47. P. 3276–3285. https://doi.org/10.1016/j.visres.2007.09.004
  22. Prinzmetal W., Beck D.M. The tilt­constancy theory of visual illusions // J. Exp. Psychol. Hum. Percept. Perform. 2001. V. 27. P. 206–217. https://doi.org/10.1037/0096­1523.27.1.206
  23. Blakemore C., Carpenter R.H.S., Georgeson M.A. Lateral inhibition between orientation detectors in the human visual system // Nature. 1970. V. 228. № 5266. P. 37–39. https://doi.org/10.1038/228037a0
  24. Bondarko V.M. The tilt illusion and orientation sensitivity // Human Physiology. 2020. V. 46. P. 312–320. https://doi.org/10.1134/S0362119720020036
  25. Dickinson J.E., Martin R.A., Badcock D.R. Lateral inhibition between banks of orientation selective channels predicts shape context effects: a tilt­illusion field // Vision Research. 2022. V. 192. P. 107975. https://doi.org/10.1016/j.visres.2021.107975
  26. Gelb D.J, Wilson H.R. Shifts in perceived size as a function of contrast and temporal modulation // Vision Res. 1983. V. 23(1). P. 71–82. https://doi.org/ 10.1016/0042­6989(83)90043­3
  27. Rudd M.E. Neurocomputational lightness model explains the appearance of real surfaces viewed under Gelb illumination // J. Perceptual Imaging. 2020. V. 3. № 1. P. 10502­1–10502­16. https://doi.org/10.2352/j.percept.imaging.2020.3.1.010502
  28. Rudd M.E. Contributed Session III: Neural model of lightness scaling in the staircase Gelb illusion // Journal of Vision. 2022. V. 22. P. 35. https://doi.org/10.1167/jov.22.3.35
  29. Westheimer G. Irradiation, border location, and the shifted­chessboard pattern // Perception. 2007. V. 36. № 4. P. 483–494. https://doi.org/10.1068/p5646
  30. Biswas B., Choudhuri R., Dey K.N. Automatic contrast enhancement of low­light images based on Naka–Rushton visual adaptation in non­sub­sampled shearlet domain // IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). 2014. P. 25–30. https://doi.org/ 10.1109/ISSPIT.20147300558
  31. Cyriac P., Canham T., Kane D., Bertalmío M. Vision models fine­tuned by cinema professionals for High Dynamic Range imaging in movies // Multimedia Tools and Applications. 2021. V. 80(2). P. 2537–2563. https://doi.org/10.1007/s11042­020­09532­y
  32. Westheimer G. The ON–OFF dichotomy in visual processing: from receptors to perception // Progress in retinal and eye research. 2007. V. 26. № 6. P. 636–648. https://doi.org/10.1016/j.preteyeres.2007.07.003
  33. Canham T., Vazquez­Corral J., Mathieu E., Bertalmío M. Matching visual induction effects on screens of different size // Journal of Vision. 2021. V. 21(6). P. 10­10. https://doi.org/10.1167/jov.21.6.10
  34. Canham T., Vazquez­Corral J., Mathieu E., Bertalmío M. Matching visual induction effects on screens of different size by regularizing a neural field model of color appearance // arXiv preprint arXiv:2005.02694. 2020. https://doi.org/10.1101/2020.09.15.507892
  35. Razmjooy N., Mousavi B.S., Soleymani F. A hybrid neural network Imperialist Competitive Algorithm for skin color segmentation // Mathematical and Computer Modelling. 2013. V. 57. № 3–4. P. 848–856. https://doi.org/10.1016/j.mem.2012.09.013
  36. Coren S. Lateral inhibition and the Wundt–Hering illusion // Psychonomic Science. 1970. V. 18. P. 341. https://doi.org/10.3758/BF03332388
  37. Gregory R.L., Heard P. Border locking and the Café Wall illusion // Perception. 1979. V. 8. P. 365–380. https://doi.org/10.1068/p080365
  38. Nematzadeh N., Powers D.M. W. A predictive account of Café Wall illusions using a quantitative model // arXiv preprint arXiv:1705.06846. 2017. https://doi.org/10.48550/arXiv.1705.06846
  39. Kitaoka A., Pinna B., Brelsta G. Contrast polarities determine the direction of Cafe Wall tilts // Perception. 2004. V. 33(1). P. 11–20. https://doi.org/10.1068/p3346
  40. Ehm W., Wackermann J. Hyperbolic geometry of Ehrenstein–Orbison type illusions // Fechner Day. 2013. P. 49–52.
  41. Ehm W., Wackermann J. Modeling geometric­optical illusions: A variational approach // Journal of Mathematical Psychology. 2012. V. 56. № 6. P. 404–416. https://doi.org/10.1016/j.jmp.2012.12.001
  42. Ehm W., Wackermann J. Geometric­optical illusions and Riemannian geometry // Journal of Mathematical Psychology. 2016. V. 71. P. 28–38. https://doi.org/10.1016/j.jmp.2016.01.005
  43. Grossberg S., Pinna B. Neural dynamics of Gestalt principles of perceptual organization: From grouping to shape and meaning // Gestalt Theory. 2012. V. 34. №. 3/4. P. 399–482.
  44. Kim B., Reif E., Wattenberg M., Bengio S. Do neural networks show gestalt phenomena? An exploration of the law of closure // arXiv preprint arXiv:1903.01069. 2019. V. 2. № 8. https://doi.org/10.48550/ arXiv.1903.01069
  45. Wackermann J. Geometric­optical illusions: a pedestrian's view of the phenomenal landscape // Proceedings of Fechner Day. 2010. V. 26. P. 165–170.
  46. Roncato S., Guidi S., Parlangeli O., Battaglini L. Illusory streaks from corners and their perceptual integration // Frontiers in Psychology. 2016. V. 7. Article 959. P. 1–14. https://doi.org/10.3389/fpsyg.2016.00959
  47. Franceschiello B., Mashtakov A., Citti G., Sarti A. Geometrical optical illusion via sub­Riemannian geodesics in the roto­translation group // Differential Geometry and its Applications. 2019. V. 65. P. 55–77. https://doi.org/10.1016/j.difgeo.2019.03.007
  48. Titarenko M.A., Malashin R.O. Study of the ability of neural networks to extract and use semantic information when they are trained to reconstruct noisy images // Journal of Optical Technology. 2022. V. 89(2). P. 81–88. https://doi.org/10.1364/JOT.89.000081
  49. Malashin R.O., Boiko A.A. Training a dynamically configurable classifier with deep Q­learning // Journal of Optical Technology. 2022. V. 89(8). P. 437–447. https://doi.org/10.1364/JOT.89.000437
  50. Yachnaya V. O., Lutsiv V. R. Stability investigation of the Pix2Pix conditional generative adversarial network with respect to input semantic image labeling data distortion // Journal of Optical Technology. 2021. V. 88(11). P. 647–653. https://doi.org/10.1364/JOT.88.000647
  51. Malakhova E. Y. Representation of categories through prototypes formed based on coordinated activity of units in convolutional neural networks //Journal of Optical Technology. 2021. V. 88(12). P. 706–709. https://doi.org/10.1364/JOT.88.000706