ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-11-17-28

УДК: 535.42, 534.23

Quasi-collinear acousto-optic diffraction in a biaxial crystal of Tl3PSe4

For Russian citation (Opticheskii Zhurnal):

Купрейчик М.И., Балакший В.И., Пожар В.Э. Квазиколлинеарная акустооптическая дифракция в двуосном кристалле Tl3PSe4 // Оптический журнал. 2023. Т. 90. № 11. С. 17–28. http://doi.org/10.17586/1023-5086-2023-90-11-17-28

 

Kupreychik M.I., Balakshy V.I., Pozhar V.E. Quasi-collinear acousto-optic diffraction in a biaxial crystal of Tl3PSe4 [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 11. P. 17–28. http://doi.org/10.17586/1023-5086-2023-90-11-17-28

For citation (Journal of Optical Technology):

M. I. Kupreychik, V. I. Balakshy, and V. E. Pozhar, "Quasi-collinear acousto-optic diffraction in a biaxial crystal of Tl3PSe4," Journal of Optical Technology. 90 (11), 646-653 (2024).  https://doi.org/10.1364/JOT.90.000646

Abstract:

Subject of study. The characteristics of the quasi-collinear acousto-optic diffraction geometry in a biaxial Tl3PSe4 crystal were investigated. Aim of study. Obtaining the characteristics of the Tl3PSe4 crystal, which show the possibility and promise of creating quasi-collinear acousto-optical tunable filters in the infrared range of the spectrum. Method. The analysis of quasi-collinear acousto-optic diffraction in the Tl3PSe4 crystal was carried out on the basis of the coupled-wave method in combination with Fourier-optics methods. A covariant approach was used to calculate the phase and group velocities, as well as the components of the diffraction tensors of interacting optical and ultrasonic beams. The parameters of quasi-collinear acousto-optical tunable filters were estimated using well-known formulas generalized to the case of acousto-optic scattering in an optically biaxial medium. Main results. The anisotropy parameters of the shear acoustic mode utilized in the proposed acousto-optical tunable filters propagating in various directions of the YZ plane are calculated. For a wide range of slices of this plane, the mutual orientation of the acoustic and optical facets of an acousto-optical cell required for the practical implementation of quasi-collinear diffraction regime is determined. The main characteristics of quasi-collinear Tl3PSe4-based acousto-optical tunable filters are estimated. The effect of the incident optical beam divergence on the shape and width of their transmission function is studied. The most optimal variants of filters are revealed in terms of spectral resolution and power consumption. It has been established that these acousto-optical tunable filters significantly outperform the existing analogs in terms of angular aperture and energy efficiency. Practical significance. The variants of acousto-optical tunable filters proposed in this paper can be used to solve problems of spectral analysis in the wavelength range from 2 to 8 µm, which do not require too high spectral resolution from the acousto-optical device.

Keywords:

acousto-optics, biaxial crystal, acoustic anisotropy, quasi-collinear interaction, acousto-optical tunable filters, noncritical phase matching condition, spectral resolution

Acknowledgements:

the work was supported by the Russian Science Foundation grant № 19-19-00606P

OCIS codes: 230.1040, 160.1050, 070.4790

References:
  1. Korablev O.I., Belyaev D.A., Dobrolenskiy Yu.S., et al. Acousto-optic tunable filter spectrometers in space missions // Appl. Opt. 2018. V. 57. № 10. P. C103–C119. https://doi.org/10.1364/AO.57.00C103
  2. Yushkov K.B., Champagne J., Kastelik J.-C., et al. AOTF-based hyperspectral imaging phase microscopy // Biomed. Opt. Exp. 2020. V. 11. № 12. P. 7053–7061. https://doi.org/10.1364/BOE.406155
  3. Harris S.E., Wallace R.W. Acousto-optic tunable filter // JOSA. 1969. V. 59. № 6. P. 744–747. https://doi.org/10.1364/JOSA.59.000744
  4. Voloshinov V.B. Close to collinear acousto-optical interaction in paratellurite // Opt. Eng. 1992. V. 31. № 10. P. 2089–2094. https://doi.org/10.1117/12.58877
  5. Molchanov V.Ya., Chizhikov S.I., Makarov O.Yu., et al. Adaptive acousto-optic technique for femtosecond laser pulse shaping // Appl. Opt. 2009. V. 48. № 7. P. C118–C124. https://doi.org/10.1364/AO.48.00C118
  6. Sapriel J., Charissoux D., Voloshinov V., et al. Tunable acousto-optic filters and equalizers for WDM applications // J. Lightw. Technol. 2002. V. 20. № 5 P. 892–899. https://doi.org/10.1109/JLT.2002.1007946
  7. Молчанов В.Я., Волошинов В.Б., Макаров О.Ю. Квазиколлинеарные перестраиваемые акустооптические фильтры на основе кристалла парателлурита для систем спектрального уплотнения и селекции каналов // Квант. электрон. 2009. Т. 39. № 4. С. 353–360. https://doi.org/10.1070/QE2009v039n04ABEH013970

       Molchanov V.Ya., Voloshinov V.B., Makarov O.Yu. Quasi-collinear tunable acousto-optic paratellurite crystal filters for wavelength division multiplexing and optical channel selection // Quant. Electron. 2009. V. 39. № 4. P. 353–360. https://doi.org/10.1070/QE2009v039n04ABEH013970

  1. Maksimenka R., Tournois P. Mid-infrared high-frequency high-resolution reflective acousto-optic filters in mercury halides // Opt. Commun. 2012. V. 285. № 5. P. 715–719. https://doi.org/10.1016/j.optcom.2011.10.078
  2. Krauz L., Pata P., Bednar J., et al. Quasi-collinear IR AOTF based on mercurous halide single crystals for spatio-spectral hyperspectral imagining // Opt. Exp. 2021. V. 29. № 9. P. 12813–12832. https://doi.org/10.1364/OE.420571
  3. Gorevoy A., Machikhin A., Martynov G., et al. Computational technique for field-of-view expansion in AOTF-based imagers // Opt. Lett. 2022. V. 47. № 3. P. 585–588. https://doi.org/10.1364/OL.438374
  4. Gottlieb M.S., Singh N.B., Hopkins R.H., et al. Noncollinear acousto-optic tunable filter: thallium phosphorus selenide system // Opt. Eng. 1994. V. 33. № 8. P. 2503–2508. https://doi.org/10.1117/12.176513
  5. Isaacs T.J., Gottlieb M., Feichtner J.D. Optoacoustic properties of thallium phosphorous selenide, Tl3PSe4 // Appl. Phys. Lett. 1974. V. 24. № 3. P. 107–109. https://doi.org/10.1063/1.1655113
  6. Gottlieb M., Isaacs T.J., Feichtner J.D., et al. Acousto-optic properties of some chalcogenide crystals // J. Appl. Phys. 1974. V. 45. № 12. P. 5145–5151. https://doi.org/10.1063/1.1663207
  7. Mytsyk B., Kryvyy T., Demyanyshyn N., et al. Piezo-, elasto- and acousto-optic properties of Tl3AsS4 crystals // Appl. Opt. 2018. V. 57. № 14. P. 3796–3801. https://doi.org/10.1364/AO.57.003796
  8. Martynyuk-Lototska I., Roman I., Gomonnai O., et al. Acoustic and elastic anisotropies of acousto-optic Tl3PSe4 crystals // Acta Acustica United with Acustica. 2018. V. 104. № 6. P. 956–962. https://doi.org/10.3813/AAA.919261
  9. Mantsevich S.N., Molchanov V.Y., Yushkov K.B., et al. Acoustic field structure simulation in quasi-collinear acousto-optic cells with ultrasound beam reflection // Ultrasonics. 2017. V. 78. P. 175–184. https://doi.org/10.1016/j.ultras.2017.03.018
  10. Yushkov K.B., Naumenko N.F. Optical beam diffraction tensor in birefringent crystals // J. Opt. 2021. V. 23. № 9. P. 09560201–09560208. https://doi.org/10.1088/2040-8986/ac15e7
  11. Mantsevich S.N., Yushkov K.B. Optimization of piezotransducer dimensions for quasicollinear paratellurite AOTF // Ultrasonics. 2021. V. 112. P. 10633501–10633508. https://doi.org/10.1016/j.ultras.2020.106335
  12. Kusters J.A., Wilson D.A., Hammond D.L. Optimum crystal orientation for acoustically tuned optical filters // JOSA. 1974. V. 64. № 4. P. 434–440. https://doi.org/10.1364/JOSA.64.000434
  13. Qin C.S., Huang G.C., Chan K.T., et al. Low drive power, sidelobe free acousto-optic tunable filters/switches // Electron. Lett. 1995. V. 31. № 15. P. 1237–1238. https://doi.org/10.1049/el:19950829