ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-11-39-49

УДК: 535.67

Estimation of color reproduction accuracy by a tunable source based on an acousto-optical tunable filter

For Russian citation (Opticheskii Zhurnal):

Беляева А.С., Романова Г.Э., Шарикова М.О. Особенности воспроизведения цвета с использованием акустооптического фильтра // Оптический журнал. 2023. Т. 90. № 11. С. 39–49. http://doi.org/10.17586/1023-5086-2023-90-11-39-49

 

 

Beliaeva A.S., Romanova G.E., Sharicova M.O. Estimation of color reproduction accuracy by a tunable source based on an acousto-optical tunable filter [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 11. P. 39–49. http://doi.org/10.17586/1023-5086-2023-90-11-39-49

For citation (Journal of Optical Technology):

A. S. Beliaeva, G. E. Romanova, and M. O. Sharikova, "Estimation of color reproduction accuracy using a tunable source based on an acoustic-optical tunable filter," Journal of Optical Technology. 90 (11), 660-666 (2024).  https://doi.org/10.1364/JOT.90.000660

Abstract:

Subject of study. A tunable source using acousto-optic filtering which allows controlling the number, position and intensity of the selected spectral lines and provides the ability to reproduce color within a wide color gamut. Aim of study. Estimation of the accuracy of color reproduction of a tunable source based on an acousto-optical tunable filter and the factors that affect this characteristic, as well as the development of an algorithm that makes it possible to ensure the optimal choice of spectral components for color reproduction with a minimum error. Methods. Using a tunable source layout that allows recording the spectral characteristics of a reproduced color, as well as determining color coordinates, and the developed algorithm, the accuracy of color reproduction is analyzed and an assessment of error sources is made. Main results. The analysis of the source parameters showed that at present, in terms of color reproduction accuracy, the developed tunable source, taking into account the proposed algorithm for selecting the basic components, can be attributed to the working standard. The study also identified ways to improve color reproduction accuracy. Practical significance. The results obtained allow evaluating the possibilities of applying a source based on an acousto-optical tunable filter, as well as forming recommendations for improving the accuracy of color reproduction. The proposed solutions can be used in the optical systems of visual colorimeters to estimate the color threshold of the difference in a wide color gamut, not previously implemented.

Keywords:

acousto-optical tunable filter, colorimetry, tunable source, color reproduction, color gamut

Acknowledgements:

the study was carried out within the framework of the State Assignment of the STC UP RAS (project FFNS-2022-0010). The experiments were carried out on the basis of the Center for Collective Use of the Scientific and Technological Center for Unique Instrumentation of the RAS

OCIS codes: 230.1040, 330.0330, 330.1690

References:
  1. Hardy L.G.H., Rand G., Rittler M.C. Tests for the detection and analysis of color-blindness // JOSA. 1945. V. 35. P. 268–275. https://doi.org/10.1364/JOSA.35.000268
  2. Bates I., Džimbeg-Malčić V., Itrić K. Optical deterioration of samples printed with basic Pantone inks // Acta Graphica: Znanstveni Časopis Za Tiskarstvo i Grafičke Komunikacije. 2012. V. 23. P. 79–90.
  3. Yoon H.C., Kang H., Lee S., et al. Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance // ACS Appl. Mater. & Interfaces. 2016. V. 8. № 28. P. 18189–18200. https://doi.org/10.1021/acsami.6b05468
  4. Park J.I., Lee M.H., Grossberget M.D., et al. Multispectral imaging using multiplexed illumination // IEEE 11th Internat. Conf. Computer Vision. 2007. P. 1–8. https://doi.org/10.1109/ICCV.2007.4409090
  5. Tanaka M., Horiuchi T., Tominaga S. Color control of a lighting system using RGBW LEDs // Proc. SPIE. Color Imaging XVI: Displaying, Processing, Hardcopy, and Applications. 2011. V. 7866. P. 256–264. https://doi.org/10.1117/12.872374
  6. Neumann A., Wierer J.J., Davis W., et al. Four-color laser white illuminant demonstrating high color-rendering quality // Opt. Exp. 2011. V. 19. № 104. P. A982–A990. https://doi.org/10.1364/OE.19.00A982
  7. Chang S.W., Liao W.C., Liao Y.M., et al. A white random laser // Sci. Rep. 2018. V. 8. № 1. P. 1–10. https://doi.org/10.1038/s41598-018-21228-w
  8. Натаровский С.Н. Методы проектирования современных оптических систем: учеб. пособ. СПб.: СПбГУ ИТМО, 2009. 176 с.

       Natarovsky S.N. Methods for designing modern optical systems [in Russian]: Textbook. St. Petersburg: SPbGU ITMO Press, 2009. 176 p.

  1. Халимов Ю.Ш., Власенко А.Н., Цепкова Г.А. и др. Профессиональные заболевания, вызванные воздействием лазерного излучения // Вестник Российской военно-медицинской академии. 2019. № 2. С. 209–214.

       Khalimov Yu.Sh., Vlasenko A.N., Tsepkova G.A., et al. Occupational diseases caused by exposure to laser radiation [in Russian] // Bulletin of the Russian Military Medical Academy. 2019. № 2. P. 209–214.

  1. Machikhin A.S., Khokhlov D.D., Pozhar V.E., et al. Acousto-optical tunable filter for a swept light source with variable transmission function // Proc. SPIE. Optical Design and Testing VIII. 2018. V. 10815. P. 129–134. https://doi.org/10.1117/12.2502756
  2. Park B., Lee S., Yoon S.C., et al. AOTF hyperspectral microscopic imaging for foodborne pathogenic bacteria detection // Proc. SPIE. Sensing for Agriculture and Food Quality and Safety III. 2011. V. 8027. P. 40–50. https://doi.org/10.1117/12.884012
  3. Шаповалов В.В., Гуревич Б.С., Колесников И.А. и др. Источник света с произвольно регулируемым спектральным составом для биомедицинских спектральных анализаторов // Биомедицинская радиоэлектроника. 2009. № 11. С. 16–20.

       Shapovalov V.V., Gurevich B.S., Kolesnikov I.A., et al. Light source with arbitrarily controlled spectral composition for biomedical spectrum analyzers [in Russian] // Biomedical Radioelectronics. 2009. № 11. P. 16–20.

  1. Мачихин А.С., Пожар В.Э., Батшев В.И. Акустооптический видеоспектрометрический модуль для медицинских эндоскопических исследований // Оптический журнал. 2013. Т. 80. № 7. С. 44–49.

       Machikhin A., Pozhar V., Batshev V. Acousto-optic video spectrometer module for medical endoscopic studies // J. Opt. Technol. 2013. V. 80. № 7. P. 439–443. https://doi.org/10.1364/JOT.80.000439.

  1. Machikhin A.S., Sharikova M.O., Lyashenko A.I., et al. Attenuation of the intensities of spectral components of a multiwavelength pulsed laser system by means of the Bragg diffraction of radiation by several acoustic waves // Quant. Electron. 2022. V. 52. № 5. P. 454. https://doi.org/10.1070/QEL18042
  2. Гуревич М.М. Цвет и его измерение. М.-Л.: Изд. АН СССР, 1950. 268 с.

       Gurevich M.M. Color and its measurement [in Russian] Moscow-Leningrad: USSR Academy of Science Press, 1950. 268 p.

  1. ГОСТ 8.205–2014. Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений координат цвета и координат цветности, показатель белизны и блеска. Введ. 2015-07-01. М.: изд. Стандартинформ, 2019. 9 с.

       GOST (Russian National Standard) 8.205–2014. State system for ensuring the uniformity of measurements. State verification scheme for measuring instruments of color coordinates and chromaticity coordinates, whiteness and gloss index [in Russian]. Introd. 07/01/2015. Moscow: Standards Publ., 2019. 9 p.

  1. Beliaeva A.S., Romanova G.E., Batshev V.I., et al. Colour reproduction by system consisting of a radiation source and acoustic-optic tuneable filter // Light & Engineering. 2022. V. 30. № 6. P. 28–32. https://doi.org/10.33383/2022-071
  2. Романова Г.Э., Батшев В.И., Беляева А.С. Проектирование оптической осветительной системы для перестраиваемого источника на акустооптической фильтрации // Оптический журнал. 2021. Т. 88. № 2. С. 12–19. https://doi.org/10.17586/1023-5086-2021-88-02-12-19

       Romanova G.E., Batshev V., Beliaeva A.S. Design of an optical illumination system for a tunable source with acousto-optical filtering // J. Opt. Technol. 2021. V. 88. P. 66–71. https://doi.org/10.1364/JOT.88.000066

  1. Молчанов В.Я., Макаров О.Ю., Друина Д.В. и др. Широкополосное электрическое согласование акустооптических устройств с трактом электронной системы управления // Вестник ТвГУ. Сер. Физика. 2011. № 14. С. 85–102.

       Molchanov V.Ya., Makarov O.Yu. Druina D.V., et al. Broadband electrical matching of acousto-optic devices with the path of the electronic control system [in Russian] // Vestnik TVGU. Ser. Physics. 2011. № 14. P. 85–102.

  1. Ocean Optics Flame UV-VIS-NIR [Электронный ресурс]. Режим доступа: https://oceanoptics.ru/spectrometers/161-spec-usb4000-uv-vis.html Заглавие с экрана. (Дата обращения: 20.05.2023)

       Ocean Optics Flame UV-VIS-NIR [Electronic resource]. Access mode: https://oceanoptics.ru/spectrometers/161-spec-usb4000-uv-vis.html Title from screen. (Accessed: 05/20/2023)

  1. Smith T., Guild J. The CIE colorimetric standards and their use // Trans. Opt. Soc. 1931. V. 33. № 3. P. 73. https://doi.org/10.1088/1475-4878/33/3/301
  2. Джадд Д. Б., Вышецки Г. Цвет в науке и технике / 3-е изд. Пер. с англ. Соболева В., Бисенгалиева В.К., Толстяковой Н.Д., Максимовой И.П. Под ред. Артюшина Л.Ф. / М.: «Мир», 1978. 592 с.

       Judd D., Wyszecki G. Color in business, science and industry. N.Y., London, Sydney, Toronto: John Willey & Sons, 1975. 410 p.