ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-11-50-61

УДК: 535.4

Control of the parameters of double acousto-optic spectral filtering in digital holography

For Russian citation (Opticheskii Zhurnal):

Польщикова О.В., Горевой А.В. Управление параметрами двойной акустооптической спектральной фильтрации в цифровой голографии // Оптический журнал. 2023. Т. 90. № 11. С. 50–61. http://doi.org/10.17586/1023-5086-2023-90-11-50-61

 

Polschikova O.V., Gorevoy A.V. Control of the parameters of double acousto-optic spectral filtering in digital holography [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 11. P. 50–61. http://doi.org/10.17586/1023-5086-2023-90-11-50-61

For citation (Journal of Optical Technology):

O. V. Polschikova and A. V. Gorevoy, "Control of the parameters of double acousto-optic spectral filtering in digital holography," Journal of Optical Technology. 90 (11), 667-673 (2024). https://doi.org/10.1364/JOT.90.000667

Abstract:

Subject of study. Off-axis digital holograms obtained with acousto-optic spectral filtering of broadband radiation. Aim of study. Evaluation of methods for controlling the parameters of the double acousto-optic spectral filtering in terms of increasing the coherence length of light and improving the quality of off-axis digital holograms. Method. For measurements, an off-axis digital holography setup based on a classical Mach–Zehnder interferometer was used. The lighting part of the setup contained a broadband radiation source and two acousto-optical cells with the possibility of separate control of their frequency and orientation. In the output channels of the interferometer, interference images were recorded and the spectra were measured. Digitally processed experimental data for single and double acousto-optic filtering were compared with the results of mathematical modeling of the acousto-optic interaction. Main results. It is shown that changing the driving frequency and orientation of acousto-optical cells under double filtering are effective methods for adaptively adjusting the recording parameters of digital holograms. In particular, with double filtering the coherence length can be increased by a factor of 1.4 compared to single filtering. Rotation of the double filter by 10° increases the coherence length by a factor of 2 compared to single unrotated filter. The coherence length increases by 35–40% if the second cell is rotated by an angle of up to 3° or if the driving frequency of the second cell is shifted by less than 1 MHz, however, in this case, the peak spectral intensity drops by 2.5 and 4 times respectively. Practical significance. Evaluation criteria and recommendations for choosing methods for controlling the parameters of double acousto-optic spectral filtering have been developed, which expand the capabilities of multi-wavelength digital holography in biomedical and technical applications, allowing adaptive changes in the recording parameters of holograms, increasing the effective field of view, and improving the accuracy of amplitude and phase image retrieval.

Keywords:

digital holography, acousto-optical tunable filter, transmission function, coherence length, interference pattern visibility

Acknowledgements:
  the work was carried out within the framework of the state task of the STC UI RAS (project FFNS-2022-0010). The results were obtained using the equipment of the center for collective use of the Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences

OCIS codes: 090.1995, 230.1040, 120.2440, 120.7000

References:
  1. Kim M.K. Digital holographic microscopy / Springer Series in Opt. Sci. V. 162. N.Y.: Springer, 2011. 254 p. https://doi.org/10.1007/978-1-4419-7793-9
  2. Mir M., Bhaduri B., Zhu R., et al. Quantitative phase imaging / Progress in Optics. Amsterdam: Elsevier B.V., 2012. V. 57. P. 133–217. https://doi.org/10.1016/b978-0-44-459422-8.00003-5
  3. Bhaduri B., Edwards C., Pham H., et al. Diffraction phase microscopy: Principles and applications in materials and life sciences // Advances in Optics and Photonics. 2014. V. 6. № 1. P. 57–119. https://doi.org/10.1364/AOP.6.000057
  4. Rosen J., Brooker G. Fluorescence incoherent color holography // Opt. Exp. 2007. V. 15. № 5. P. 2244–2250. https://doi.org/10.1364/OE.15.002244
  5. Park Y., Yamauchi T., Choi W., et al. Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells // Opt. Lett. 2009. V. 34. № 23. P. 3668–3670. https://doi.org/10.1364/OL.34.003668
  6. Pham H., Bhaduri B., Ding H., et al. Spectroscopic diffraction phase microscopy // Opt. Lett. 2012. V. 37. № 16. P. 3438–3440. http://dx.doi.org/10.1364/OL.37.003438
  7. Dubey V., Singh G., Singh V., et al. Multispectral quantitative phase imaging of human red blood cells using inexpensive narrowband multicolor LEDs // Appl. Opt. 2016. V. 55. № 10. P. 2521–2525. https://doi.org/10.1364/AO.55.002521
  8. Remmersmann C., Stürwald S., Kemper B., et al. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging // Appl. Opt. 2009. V. 48. № 8. P. 1463–1472. https://doi.org/https://doi.org/10.1364/AO.48.001463
  9. Chen S., Ryu J., Lee K., et al. Swept source digital holographic phase microscopy // Opt. Lett. 2016. V. 41. № 4. P. 665–668. https://doi.org/10.1364/OL.41.000665
  10. Мачихин А.С., Власова А.Г., Польщикова О.В. и др. Использование лазерного плазменного источника в мультиспектральной голографической микроскопии // Оптический журнал. 2019. Т. 86. № 12. С. 43–48. https://doi.org/10.17586/1023-5086-2019-86-12-43-48

       Machikhin A.S., Vlasova A.G., Polschikova O.V., et al. Multispectral holographic microscopy using a laser plasma source // J. Opt. Technol. 2019. V. 86. № 12. P. 781–785. https://doi.org/10.1364/JOT.86.000781

  1. Rinehart M., Zhu Y., Wax A. Quantitative phase spectroscopy // Biomed. Opt. Exp. 2012. V. 3. № 5. P. 958–965. https://doi.org/10.1364/BOE.3.000958
  2. Turko N.A., Shaked N.T. Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography // Opt. Lett. 2017. V. 42. № 1. P. 73–76. https://doi.org/10.1364/OL.42.000073
  3. Huang Y.-H., Hayasaki Y. Multi-spectral digital holography with high-speed wavelength switching and high-speed camera // Proc. SPIE. 2018. V. 10749. P. 107490I. https://doi.org/10.1117/12.2320077
  4. Dubois F., Yourassowsky C., Callens N., et al. Digital holographic microscopy working with a partially spatial coherent source // Coherent Light Microscopy. Springer Series in Surface Sci. / Eds. by Ferraro P., Wax A., Zalevsky Z. Berlin, Heidelberg: Springer, 2011. V. 46. P. 31–59. https://doi.org/10.1007/978-3-642-15813-1_2
  5. Cuche E., Marquet P., Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography // Appl. Opt. 2000. V. 39. № 23. P. 4070–4075. https://doi.org/10.1364/AO.39.004070
  6. Gorevoy A., Polschikova O., Machikhin A., et al. Multi-wavelength off-axis digital holographic microscopy with broadly tunable low-coherent sources: Theory, performance and limitations // J. Opt. 2022. V. 24. № 11. P. 115701. https://doi.org/10.1088/2040-8986/ac906a
  7. Польщикова О.В., Горевой А.В., Мачихин А.С. Экспериментальное исследование влияния функции пропускания перестраиваемого акустооптического фильтра на характеристики интерференционной картины во внеосевой схеме цифровой голографии // Светотехника. 2022. № 5. С. 38–43.

       Polschikova O.V., Gorevoy A.V., Machikhin A.S. Experimental study of the influence of the transmission function of acousto-optic tuneable filter on the interference pattern in off-axis digital holography // Light & Engineering. 2022. V. 30. № 6. P. 43–50. https://doi.org/10.33383/2022-083

  1. You J.-W., Ahn J., Kim S., et al. Efficient double-filtering with a single acoustooptic tunable filter // Opt. Exp. 2008. V. 16. № 26. P. 21505–21511. https://doi.org/10.1364/OE.16.021505
  2. Champagne J., Kastelik J.-C., Dupont S., et al. Study of the spectral bandwidth of a double-pass acousto-optic system [Invited] // Appl. Opt. 2018. V. 57. № 10. P. C49–C55. https://doi.org/10.1364/AO.57.000C49
  3. Kastelik J.-C., Benaissa H., Dupont S., et al. Acousto-optic tunable filter using double interaction for sidelobe reduction // Appl. Opt. 2009. V. 48. № 7. P. C4–C10. https://doi.org/10.1364/AO.48.0000C4
  4. Poon T.-C., Liu J.-P. Introduction to modern digital holography: With MATLAB. N.Y.: Cambridge University Press, 2014. 215 p. https://doi.org/10.1017/CBO9781139061346
  5. Katrašnik J., Pernuš F., Likar B. Deconvolution in acousto-optical tunable filter spectrometry // Appl. Spectrosc. 2010. V. 64. № 11. P. 1265–1273. https://doi.org/10.1366/000370210793334945
  6. Gorevoy A.V., Machikhin A.S., Martynov G.N., et al. Spatiospectral transformation of noncollimated light beams diffracted by ultrasound in birefringent crystals // Photonics Res. 2021. V. 9. № 5. P. 687–693. https://doi.org/10.1364/PRJ.417992