ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-11-06-16

УДК: 535.015; 535.317

Formation of Bessel light beams with subwavelength diameter of axial maximum for diagnostics and nonlinear photolithography of semiconductor materials

For Russian citation (Opticheskii Zhurnal):

Белый В.Н., Курилкина С.Н., Хило Н.А., Ропот П.И. Формирование бесселевых световых пучков с субволновым диаметром осевого максимума для диагностики и нелинейной фотолитографии полупроводниковых материалов // Оптический журнал. 2023. Т. 90. № 11. С. 6–16. http://doi.org/10.17586/1023-5086-2023-90-11-06-16

 

Belyi V.N., Kurilkina S.N., Khilo N.A., Ropot P.I. Formation of Bessel light beams with subwavelength diameter of axial maximum for diagnostics and nonlinear photolithography of semiconductor materials [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 11. P. 6–16. http://doi.org/10.17586/1023-5086-2023-90-11-06-16

For citation (Journal of Optical Technology):

V. N. Belyi, S. N. Kurilkina, N. A. Khilo, and P. I. Ropot, "Formation of Bessel light beams with a subwavelength diameter of the axial maximum for diagnostics and nonlinear photolithography of semiconductor materials," Journal of Optical Technology. 90 (11), 639-645 (2024).  https://doi.org/10.1364/JOT.90.000639

Abstract:

Subject of study. Schematic solutions of optical systems for forming vector Bessel light beams with a subwavelength diameter of axial maximum. The aims of the study are development of optical schemes for Bessel light beams formation with a large numerical aperture based on a combination of refractive and reflective conical optical elements, and determination of application methods for zero and higher order vector Bessel light beams to form 3D sub-surface cylindrical and tubular microstructures in solids (particularly, silicon). Method. In this paper, to solve this problem, it is proposed to use schemes based on reflective conical optical elements. The first of them is based on a combination of refractive and reflective conical elements, the second is similar to the first, but to eliminate the dependence of reflection losses on polarization, and also to achieve a higher value of the numerical aperture, it uses an additional optical element in the form of a truncated cone. Main results. Two types of optical schemes are proposed for forming zero and higher order vector beams. They distinguish with a large numeric aperture and a high ratio of the diffraction-free region length to the Bessel light beam main maximum diameter. This is due to reflective optical elements in the optical schemes. The influence of vector Bessel light beams polarization on the field profile is analyzed. Analytical expressions are derived for intensity radial distribution of TH- and TE- polarized vector Bessel beams (and their superpositions), which provide the sub-wavelength size of the axial maximum. Conditions of 3D sub-surface microstructures formation in semiconductor plates are studied. It is shown that by means of nonlinear photolithography process, TE-polarized Bessel beam can form tubular structures in a semiconductor plate, while TH-polarized Bessel beams, as well as TE-TH-superposition are able to create tubular and also cylindrical microstructures. The microstructure type and its size can be controlled by varying the cone angle. Practical significance. The proposed vector Bessel light beam optical shapers is promising in submicron optical microscopy and nonlinear photolithography in semiconductors.

Keywords:

Bessel light beam, axicon, reflective optics, vector beams, polarization

Acknowledgements:
the research was carried out with the financial support of the Belarusian Foundation for Basic Research within the framework of the scientific project № Ф22ТУРЦ-003

OCIS codes: 140.0140, 230.0230, 240.0240

References:
  1. Durnin J., Miceli J.J.Jr., Eberly J.H. Diffraction free beams // Phys. Rev. Lett. 1987. V. 58. P. 1499–1501. htpps://doi.org/10.1103/PhysRevLett.58.1499
  2. McGloin D., Dholakia K. Bessel beams: Diffraction in a new light // Contemporary Phys. 2005. V. 46. № 1. P. 15–28. htpps://doi.org/10.1080/0010751042000275259
  3. Duocastella M., Arnold C.B. Bessel and annular beams for materials processing // Laser Photonics Rev. 2012.V. 6. № 5. P. 1–15. htpps://doi.org/10.1002/lpor.201100031
  4. Khonina S.N., Kazanskiy N.L., Karpeev S.V., et al. Bessel beam: Significance and applications // A Progressive Rev. Micromachines. 2020. V. 11. № 11. P. 997. htpps://doi.org/ 10.3390/mi11110997
  5. Ren Y.-X., He H., Tang H., et al. Non-diffracting light wave: Fundamentals and biomedical applications // Front. Phys. 2021. V. 9. P. 698343. htpps://doi.org/10.3389/fphy.2021.698343
  6. McLeod J. H. The axicon: A new type of optical element // JOSA. 1954. V. 44. № 8. P. 592–597. https://doi.org/10.1364/JOSA.44.000592
  7. Chattrapiban N., Rogers E.A., Cofield D., et al. Generation of nondiffracting Bessel beams by use of a spatial light modulator // Opt. Lett. 2003. V. 28. № 22. P. 2183–2185. htpps://doi.org/ 10.1364/OL.28.002183
  8. Durnin J., Miceli J.J., Eberly J.H. Comparison of Bessel and Gaussian beams // Opt. Lett. 1988. V. 13. № 2. P. 79–80. https://doi.org/10.1364/OL.13.000079
  9. Snoeyink C. Imaging performance of Bessel beam microscopy // Opt. Lett. 2013. V. 38. № 14. P. 2550–2553. htpps://doi.org/10.1364/OL.38.002550
  10. Thibon L., Lorenzo L.E., Piché M., et al. Resolution enhancement in confocal microscopy using Bessel–Gauss beams // Opt. Exp. 2017. V. 25. № 3. P. 2162–2177. htpps://doi.org/10.1364/OE.25.002162
  11. Mazloumi M., Dawson E., Sabat R.G. Hierarchical concentric surface patterns and metasurfaces on azobenzene molecular glass films using axicon interference lithography // Opt. Mater. 2023. V. 136. P. 113428. https://doi.org/10.1016/j.optmat.2022.113428
  12. Leutenegger M., Ringemann C., Lasser T., et al. Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS) // Opt. Exp. 2012. V. 20. P. 5243–5263. htpps://doi.org/10.1364/OE.20.005243
  13. Schreiber B., Elsayad K., Heinze K.G. Axicon-based Bessel beams for flat-field illumination in total internal reflection fluorescence microscopy // Opt. Lett. 2017. V. 42. P. 3880–3883. htpps://doi.org/10.1364/OL.42.003880
  14. Tokel O., Turnali A., Makey G., et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon // Nat. Phot. 2017. V. 11. P. 639–645. htpps://doi.org/10.1038/s41566-017-0004-4
  15. Turnali A., Ishraq A., Makey G., et al. spatial-control of laser-written in-chip si structures with Bessel beams // Conf. Lasers and Electro-Optics Europe & European Quantum Electronics. (CLEO/Europe-EQEC). June 23–27, 2019. htpps://doi.org/10.1109/CLEOE-EQEC.2019.8873401.
  16. Rushin S, Leizer A. Evanescent Bessel beams // JOSA. 1998. V. A15. P. 1139–1143. https://doi.org/10.1364/JOSAA.15.001139
  17. Kurilkina S.N., Belyi V.N., Kazak N.S. Features of evanescent Bessel light beams formed in structures containing a dielectric layer // Opt. Comm. 2010. V. 283. P. 3860–3868. htpps://doi.org/10.1016/j.optcom.2010.05.076
  18. Muhanna K Al-Muhanna, Kurilkina S.N., Belyi V.N., et al. Energy flow patterns in an optical field formed by a superposition of evanescent Bessel light beams // J. Opt. 2011. V. 13. P. 105703. htpps://doi.org/10.1088/2040-8978/13/10/105703
  19. Rui G., Wang X., Cui Y. Manipulation of metallic nanoparticle with evanescent vortex Bessel beam // Opt. Exp. 2015. V. 23. № 20. P. 25707–25716. htpps://doi.org/10.1364/OE.23.025707
  20. Grosjean T., Courjon D., Van Labeke D. Bessel beams as virtual tips for near-field optics // J. Microscopy. 2003. V. 210. № 3. P. 319–323. htpps://doi.org/10.1046/j.1365-2818.2003.01163.x
  21. Şahin R. Bessel and Bessel vortex beams generated by blunt-tip axicon // Turkish J. Phys. 2018. V. 42. № 1. P. 47–60. htpps://doi.org/10.3906/fiz-1707-8
  22. Belyi V.N., Khilo N.A., Kazak N.S., et al. Propagation of high-order circularly-polarized Bessel Beams and vortex generation in uniaxial crystals // Opt. Eng. 2011. V. 50. P. 059001. htpps://doi.org/10.1117/1.3572109
  23. Yuh-Yan Yu, Chin-Kai Chang, Ming-Wei Lai, et al. Laser ablation of silicon using a Bessel-like beam generated by a subwavelength annular aperture structure // Appl. Opt. 2011. V. 50. № 34. P. 6384–6390. htpps://doi.org/10.1364/AO.50.006384
  24. Khilo N.A. Conical diffraction and transformation of Bessel beams in biaxial crystals // Opt. Comm. 2013. V. 286. P. 1–5. htpps://doi.org/10.1016/j.optcom.2012.07.030