DOI: 10.17586/1023-5086-2023-90-11-06-16
УДК: 535.015; 535.317
Formation of Bessel light beams with subwavelength diameter of axial maximum for diagnostics and nonlinear photolithography of semiconductor materials
Full text on elibrary.ru
Publication in Journal of Optical Technology
Белый В.Н., Курилкина С.Н., Хило Н.А., Ропот П.И. Формирование бесселевых световых пучков с субволновым диаметром осевого максимума для диагностики и нелинейной фотолитографии полупроводниковых материалов // Оптический журнал. 2023. Т. 90. № 11. С. 6–16. http://doi.org/10.17586/1023-5086-2023-90-11-06-16
Belyi V.N., Kurilkina S.N., Khilo N.A., Ropot P.I. Formation of Bessel light beams with subwavelength diameter of axial maximum for diagnostics and nonlinear photolithography of semiconductor materials [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 11. P. 6–16. http://doi.org/10.17586/1023-5086-2023-90-11-06-16
V. N. Belyi, S. N. Kurilkina, N. A. Khilo, and P. I. Ropot, "Formation of Bessel light beams with a subwavelength diameter of the axial maximum for diagnostics and nonlinear photolithography of semiconductor materials," Journal of Optical Technology. 90 (11), 639-645 (2024). https://doi.org/10.1364/JOT.90.000639
Subject of study. Schematic solutions of optical systems for forming vector Bessel light beams with a subwavelength diameter of axial maximum. The aims of the study are development of optical schemes for Bessel light beams formation with a large numerical aperture based on a combination of refractive and reflective conical optical elements, and determination of application methods for zero and higher order vector Bessel light beams to form 3D sub-surface cylindrical and tubular microstructures in solids (particularly, silicon). Method. In this paper, to solve this problem, it is proposed to use schemes based on reflective conical optical elements. The first of them is based on a combination of refractive and reflective conical elements, the second is similar to the first, but to eliminate the dependence of reflection losses on polarization, and also to achieve a higher value of the numerical aperture, it uses an additional optical element in the form of a truncated cone. Main results. Two types of optical schemes are proposed for forming zero and higher order vector beams. They distinguish with a large numeric aperture and a high ratio of the diffraction-free region length to the Bessel light beam main maximum diameter. This is due to reflective optical elements in the optical schemes. The influence of vector Bessel light beams polarization on the field profile is analyzed. Analytical expressions are derived for intensity radial distribution of TH- and TE- polarized vector Bessel beams (and their superpositions), which provide the sub-wavelength size of the axial maximum. Conditions of 3D sub-surface microstructures formation in semiconductor plates are studied. It is shown that by means of nonlinear photolithography process, TE-polarized Bessel beam can form tubular structures in a semiconductor plate, while TH-polarized Bessel beams, as well as TE-TH-superposition are able to create tubular and also cylindrical microstructures. The microstructure type and its size can be controlled by varying the cone angle. Practical significance. The proposed vector Bessel light beam optical shapers is promising in submicron optical microscopy and nonlinear photolithography in semiconductors.
Bessel light beam, axicon, reflective optics, vector beams, polarization
Acknowledgements:OCIS codes: 140.0140, 230.0230, 240.0240
References:- Durnin J., Miceli J.J.Jr., Eberly J.H. Diffraction free beams // Phys. Rev. Lett. 1987. V. 58. P. 1499–1501. htpps://doi.org/10.1103/PhysRevLett.58.1499
- McGloin D., Dholakia K. Bessel beams: Diffraction in a new light // Contemporary Phys. 2005. V. 46. № 1. P. 15–28. htpps://doi.org/10.1080/0010751042000275259
- Duocastella M., Arnold C.B. Bessel and annular beams for materials processing // Laser Photonics Rev. 2012.V. 6. № 5. P. 1–15. htpps://doi.org/10.1002/lpor.201100031
- Khonina S.N., Kazanskiy N.L., Karpeev S.V., et al. Bessel beam: Significance and applications // A Progressive Rev. Micromachines. 2020. V. 11. № 11. P. 997. htpps://doi.org/ 10.3390/mi11110997
- Ren Y.-X., He H., Tang H., et al. Non-diffracting light wave: Fundamentals and biomedical applications // Front. Phys. 2021. V. 9. P. 698343. htpps://doi.org/10.3389/fphy.2021.698343
- McLeod J. H. The axicon: A new type of optical element // JOSA. 1954. V. 44. № 8. P. 592–597. https://doi.org/10.1364/JOSA.44.000592
- Chattrapiban N., Rogers E.A., Cofield D., et al. Generation of nondiffracting Bessel beams by use of a spatial light modulator // Opt. Lett. 2003. V. 28. № 22. P. 2183–2185. htpps://doi.org/ 10.1364/OL.28.002183
- Durnin J., Miceli J.J., Eberly J.H. Comparison of Bessel and Gaussian beams // Opt. Lett. 1988. V. 13. № 2. P. 79–80. https://doi.org/10.1364/OL.13.000079
- Snoeyink C. Imaging performance of Bessel beam microscopy // Opt. Lett. 2013. V. 38. № 14. P. 2550–2553. htpps://doi.org/10.1364/OL.38.002550
- Thibon L., Lorenzo L.E., Piché M., et al. Resolution enhancement in confocal microscopy using Bessel–Gauss beams // Opt. Exp. 2017. V. 25. № 3. P. 2162–2177. htpps://doi.org/10.1364/OE.25.002162
- Mazloumi M., Dawson E., Sabat R.G. Hierarchical concentric surface patterns and metasurfaces on azobenzene molecular glass films using axicon interference lithography // Opt. Mater. 2023. V. 136. P. 113428. https://doi.org/10.1016/j.optmat.2022.113428
- Leutenegger M., Ringemann C., Lasser T., et al. Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS) // Opt. Exp. 2012. V. 20. P. 5243–5263. htpps://doi.org/10.1364/OE.20.005243
- Schreiber B., Elsayad K., Heinze K.G. Axicon-based Bessel beams for flat-field illumination in total internal reflection fluorescence microscopy // Opt. Lett. 2017. V. 42. P. 3880–3883. htpps://doi.org/10.1364/OL.42.003880
- Tokel O., Turnali A., Makey G., et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon // Nat. Phot. 2017. V. 11. P. 639–645. htpps://doi.org/10.1038/s41566-017-0004-4
- Turnali A., Ishraq A., Makey G., et al. spatial-control of laser-written in-chip si structures with Bessel beams // Conf. Lasers and Electro-Optics Europe & European Quantum Electronics. (CLEO/Europe-EQEC). June 23–27, 2019. htpps://doi.org/10.1109/CLEOE-EQEC.2019.8873401.
- Rushin S, Leizer A. Evanescent Bessel beams // JOSA. 1998. V. A15. P. 1139–1143. https://doi.org/10.1364/JOSAA.15.001139
- Kurilkina S.N., Belyi V.N., Kazak N.S. Features of evanescent Bessel light beams formed in structures containing a dielectric layer // Opt. Comm. 2010. V. 283. P. 3860–3868. htpps://doi.org/10.1016/j.optcom.2010.05.076
- Muhanna K Al-Muhanna, Kurilkina S.N., Belyi V.N., et al. Energy flow patterns in an optical field formed by a superposition of evanescent Bessel light beams // J. Opt. 2011. V. 13. P. 105703. htpps://doi.org/10.1088/2040-8978/13/10/105703
- Rui G., Wang X., Cui Y. Manipulation of metallic nanoparticle with evanescent vortex Bessel beam // Opt. Exp. 2015. V. 23. № 20. P. 25707–25716. htpps://doi.org/10.1364/OE.23.025707
- Grosjean T., Courjon D., Van Labeke D. Bessel beams as virtual tips for near-field optics // J. Microscopy. 2003. V. 210. № 3. P. 319–323. htpps://doi.org/10.1046/j.1365-2818.2003.01163.x
- Şahin R. Bessel and Bessel vortex beams generated by blunt-tip axicon // Turkish J. Phys. 2018. V. 42. № 1. P. 47–60. htpps://doi.org/10.3906/fiz-1707-8
- Belyi V.N., Khilo N.A., Kazak N.S., et al. Propagation of high-order circularly-polarized Bessel Beams and vortex generation in uniaxial crystals // Opt. Eng. 2011. V. 50. P. 059001. htpps://doi.org/10.1117/1.3572109
- Yuh-Yan Yu, Chin-Kai Chang, Ming-Wei Lai, et al. Laser ablation of silicon using a Bessel-like beam generated by a subwavelength annular aperture structure // Appl. Opt. 2011. V. 50. № 34. P. 6384–6390. htpps://doi.org/10.1364/AO.50.006384
- Khilo N.A. Conical diffraction and transformation of Bessel beams in biaxial crystals // Opt. Comm. 2013. V. 286. P. 1–5. htpps://doi.org/10.1016/j.optcom.2012.07.030